Usamos cookies em nosso site para lhe dar a experiência mais relevante, lembrando suas preferências e repetindo visitas. Ao clicar em "Aceitar tudo", você concorda com o uso de TODOS os cookies. No entanto, você pode visitar "Configurações de cookies" para fornecer um consentimento controlado.

Visão geral da privacidade

Este site usa cookies para melhorar sua experiência enquanto você navega pelo site. Destes, os cookies categorizados conforme necessário são armazenados no seu navegador, pois são essenciais para o funcionamento das funcionalidades básicas do site. T...

Sempre ativado

Os cookies necessários são absolutamente essenciais para que o site funcione corretamente. Esta categoria inclui apenas cookies que garantem funcionalidades básicas e recursos de segurança do site. Esses cookies não armazenam nenhuma informação pessoal.

Quaisquer cookies que podem não ser particularmente necessários para o funcionamento do site e são usados especificamente para coletar dados pessoais do usuário através de análises, anúncios, outros conteúdos incorporados são denominados como cookies não necessários. É obrigatório obter o consentimento do usuário antes de executar esses cookies em seu site.

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Ano Novo Islâmico

Auto: Paulo Pereira – Astrônomo do Planetário do Rio de Janeiro

No próximo dia 29 de julho, a comunidade muçulmana iniciará um novo ano, correspondente ao dia 1 de Muharam do ano de 1444 no calendário islâmico. Ao contrário do que ocorre nos países ocidentais, o ano novo islâmico não é um evento suntuoso, como a festividade Id Al-Fitr, que sucede o mês do Ramadã, esse sim o mês mais importante para os muçulmanos. Enquanto o nosso calendário é solar, o adotado em diversos países islâmicos é lunar, gerando situações curiosas, que poucas pessoas no ocidente se dão conta.

O ciclo das fases da Lua. Imagens não estão em escala.

A edição de toda a revelação feita ao profeta Muhammad, compilada num único exemplar, ocorreu no ano 653, durante o governo do califa Uthman. Já o Hadíth, compilação dos ditos e ações do profeta, atingiu seu vigor no século 8. Juntas, a revelação e a tradição, moldaram não somente a sociedade, como a ciência islâmica. No caso da Astronomia, essa influência é acentuada. Com o calendário, não foi diferente.

O nosso calendário se baseia no movimento da Terra ao redor do Sol, e, portanto, acompanha o ciclo das estações. Um calendário lunar não tem esse compromisso pois, como o nome indica, ele se baseia apenas nas fases da Lua. Como consequência, as principais festividades religiosas caminham por entre as estações. Tome-se por exemplo, o mês mais importante do calendário islâmico ‒ o Ramadã, cuja origem remete à palavra de origem árabe “ramida”, que significa “ardente” (uma alusão ao jejum realizado na época mais quente do ano). Com a adoção do calendário lunar, este mês pode cair em qualquer estação do ano, inclusive no inverno.

Você deve estar se perguntando o porquê dos meses islâmicos caminharem pelas estações. O ano lunar tem cerca de 11 dias a menos que o ano solar. Assim, a cada ano no nosso calendário, o ano lunar começa 11 dias mais cedo. Para entendermos isso precisaremos falar sobre as fases da Lua.

A Lua não tem luz própria. Se assim fosse, ela seria sempre Cheia. Ela é o satélite natural da Terra, dando uma volta completa em 27 dias e 7 horas (27,32 dias), aproximadamente. Apesar disso, o ciclo lunar completo dura cerca de 29 dias e 12 horas (29,5 dias). Achou estranho? Lembre-se: a Terra não está parada, mas orbita o Sol. Na ilustração abaixo, na posição (a) temos a Lua Nova, quando o Sol, a Lua e a Terra estão aproximadamente alinhados, com a Lua entre os dois. Na posição (b), 27,32 dias depois, a Lua retorna à mesma posição que ela estava na posição (a). No entanto, como a Terra se moveu enquanto a Lua girava ao redor da Terra, a Lua Nova só ocorrerá cerca de dois dias depois.

Ano Novo Islâmico - sol e lua
Configuração Sol-Lua-Terra na Lua Nova. Os tamanhos e distâncias dos corpos celestes representados, não estão em escala.

O ano islâmico tem 12 meses lunares e, portanto, para obtermos a quantidade de dias no calendário lunar, basta multiplicarmos 12 por 29,5 que dá 354 dias. Assim, o calendário lunar tem certa de 11 dias a menos que o solar (que tem 365 dias). Como não é prático um mês de 29 dias e meio, cada mês do calendário lunar tem, de forma intercalada, 29 e 30 dias, o que na média dá os tais 29,5 dias.

Meses do calendário islâmico

Perguntar-te-ão sobre os novilúnios. Dize-lhes: Servem para auxiliar o homem no cômputo do tempo e no conhecimento da época da peregrinação.” (Alcorão 2:189)

Curiosamente cada mês lunar se inicia com a primeira visão da Lua Crescente no horizonte oeste, logo após o pôr do sol, e cada dia começa ao pôr do sol (por aqui, a meia-noite marca o início de cada dia).

Costuma-se empregar no calendário islâmico um ciclo de 30 anos, sendo 11 deles bissextos (a saber, os anos 1, 5, 7, 10, 13, 16, 18, 21, 24, 26 e 29), quando se adiciona um dia ao décimo segundo mês, que passa a ter 30 dias.

Faltou esclarecer um dado importante, que é o marco inicial do calendário islâmico. Ele toma como referência a Hégira – migração do profeta Muhammad para a cidade de Medina, em 16 de julho de 622d.C.

Não é simples fazer a conversão do calendário islâmico para o gregoriano, uma vez que o calendário lunar é bem irregular. Além disso, em vários países islâmicos, as proclamações das autoridades religiosas quanto ao período de visibilidade da Lua Crescente costumam ter peso. Consequentemente, as datas fornecidas em diferentes localidades podem apresentar diferenças de um ou dois dias.

Existe uma maneira aproximada de fazer a conversão do ano gregoriano para o islâmico:

a) subtraímos 622 (ano da Hégira) do ano gregoriano;

b)multiplicamos o resultado por 1,031.

Por exemplo, o ano de 2022 corresponde a:
2022 – 622 = 1400 =>
1400 x 1,031 = 1443,4

Portanto o ano gregoriano de 2022 corresponde aos anos
1443 / 1444 islâmicos.

Aparentemente o calendário lunar foi adotado pelos muçulmanos porque era muito mais fácil de observar as fases da Lua do que se basear no movimento aparente do Sol. E não apenas. É mais fácil acompanhar o movimento da Lua por entre as constelações (o Sol, como sabemos, impede a visão das constelações durante o dia). O ciclo das fases lunares tornou-se uma “paixão” dos muçulmanos e “a Lua crescente” tornou-se o símbolo do Islã.

Ano Novo Islâmico
Crescente lunar e o planeta Vênus.

Ressalte-se que o calendário islâmico é direcionado para as práticas religiosas. No nível governamental, normalmente se utiliza o calendário civil, até porque vários países árabes têm uma parcela considerável de não muçulmanos.

Como a primeira visibilidade da Lua Crescente depende de fatores locais, em alguns lugares do planeta o ano novo islâmico ocorrerá no dia 30 de julho.

Uma última curiosidade: como o ano islâmico é sempre mais curto que o ano gregoriano, uma data no calendário islâmico pode ocorrer mais do que uma vez no decurso do nosso ano solar. Por exemplo, o Ano Novo Islâmico ocorreu duas vezes em 1943: uma em 8 de janeiro e outra em 28 de dezembro. A próxima vez que isso acontecerá será no ano 2041 (1463H).

Feliz 1444!

Nota de Agradecimento: A Fundação Planetário agradece a valiosa consultoria, na elaboração do texto, de Jamil Ibrahim Iskandar, professor de Filosofia Medieval Árabe  na Universidade Federal de São Paulo (UNIFESP), Campus Guarulhos.

Leia também:

Categories
Coluna do Astrônomo Conteúdo científico Eventos

Apollo 11 pousa na Lua

Por Naelton Mendes de Araujo – Astrônomo da Fundação Planetário da Cidade do Rio de Janeiro

O começo de tudo: Programa Apollo

Apollo 11 pousa na Lua
Esquerda: Patch da missão Apollo 11 e foguete Saturno V no lançamento. Centro Módulo Lunar. Direita: Patch do programa Apollo e a tripulação da Apollo 11 – da esquerda para a direita: Armstrong, Collins e Aldrin.

O primeiro homem na Lua foi resultado da corrida espacial entre EUA e URSS. A história do programa Apollo está associada ao desenvolvimento do poderoso foguete Saturno V, o maior foguete já construído pelo homem. O primeiro voo deste veículo espacial foi em novembro de 1967 na chamada missão Apollo 4, não tripulada. Em outubro de 1968 uma variante menor do foguete, o Saturno 1B, levou a primeira tripulação do programa Apollo de número 7 para um voo ao redor da Terra. Nesta missão foi testado o módulo de comando. Dois meses depois aconteceu o primeiro voo tripulado usando o Saturno V: a missão Apollo 8. Nesta missão os astronautas Frank Borman, Jim Lovell e William Anders, circundaram a Lua. Este feito foi inédito marcando claramente uma dianteira norte-americana na disputa espacial.

Várias versões do Saturno V para cada missão

A Apollo 9 em março de 1969 realizou o primeiro teste do módulo lunar ao redor da Terra. Em maio de 1969 foi realizado o primeiro teste ao redor da Lua com o módulo lunar. A cada missão se avançava um pouco mais na direção do alvo: pousar um astronauta na superfície lunar.

20 de julho: “a Águia pousou

Acima: Estágios do Saturno V – Abaixo à esquerda: Módulos de Serviço, Comando e Lunar em configuração de cruzeiro. Abaixo à direita: Patch da missão Apollo 11, com a água (símbolo norte-americano) pousando na superfície lunar – lembrando que o módulo lunar chamava-se Eagle.

A Apollo 11 partiu de Cabo Canaveral em 16 de julho de 1969 com três astronautas: Neil Armstrong, Michael Collins e Buzz Aldrin. Os dois primeiros pisaram na Lua em 20 de julho, enquanto Collins circundava nosso satélite. No programa Apollo as naves eram construídas em módulos que eram descartados à medida que iam sendo usados. O módulo de comando chamava-se Colúmbia e o módulo lunar Eagle. Do conjunto de 111 metros no lançamento, somente o Columbia, de formato cônico, voltou à Terra.

Apollo 11
Módulo Columbia – Museu Nacional do Ar e Espaço (EUA).

Até hoje o módulo de descida da Eagle se encontra no mar da Tranquilidade. Os demais módulos da missão ou se queimaram na atmosfera, ou se encontram em órbita solar. O módulo Columbia se encontra em exposição no Museu Nacional do Ar e Espaço. Foram oito dias para ir e voltar durante esta missão memorável.

Depois da Apollo 11

Apollo 11 carro lunar
Esquerda: Patch da Apollo 15 que levou o primeiro jipe lunar. Direita: Módulo danificado da Apollo 13 e seu Patch.

Foram seis missões à Lua depois do sucesso estrondoso da Apollo 11. A cada missão algo era introduzido e aumentava o tempo de permanência na superfície lunar. Um destaque especial para a missão Apollo 13, de abril de 1970, que não chegou a atingir a Lua. Houve uma explosão no módulo de serviço que por pouco não causou uma tragédia. A saga desta missão é descrita no filme Apollo 13.

A primeira missão a usar o jipe lunar foi a de número 15 em julho de 1971. O programa lunar encerrou suas viagens em dezembro de 1972 com a missão Apollo 17. Desde então nenhum astronauta jamais pisou em outro astro.

O que nos reserva o futuro?

Apollo 11
SLS na torre de lançamento para teste não tripulado e o logo do programa Artemis.

A agência espacial norte-americana, a Nasa, já tem um projeto em andamento chamado Artemis. Este era o nome da deusa da caça e irmã de Apollo. Este projeto pretende levar a primeira mulher à Lua na próxima década. Para isso a Nasa tem desenvolvido um novo foguete lançador: Space Launch System (SLS). Este veículo lançador virá a fazer o papel que o Saturno V fez na década de 60. Há muita semelhança entre este novo foguete e o sistema dos antigos Space Shuttles. Muita tecnologia foi aproveitada, desde o tanque laranja e os boosters de combustível sólido. Vários países agora participam da exploração do nosso satélite: China, Japão, Índia, além dos EUA, Rússia e Comunidade Europeia.

Leia também

Categories
Coluna do Astrônomo Conteúdo científico

James Webb, vendo mais longe e melhor

Naelton Mendes de Araujo

Demorou mas chegou…

Esq.: JW dobrado na coifa do foguete. Acima: Logo da missão. Ao fundo: lançamento do JW. DIr: Espelho do JW durante a montagem.

O mais esperado telescópio espacial, o James Webb (JW), é considerado o sucessor do Hubble Space Telescope (HST). Seu projeto começou em 1996 mas seu lançamento só ocorreu em dezembro de 2021. O lançamento correu bem, mas a equipe só relaxou após um período de mais de 15 dias, depois de complicadas manobras. Estas manobras levaram o veículo espacial até quase um milhão e meio de distância da Terra. O veículo foi todo dobrado dentro da coifa do foguete como se fosse um origami que se abriu no espaço. Este processo incluiu o desdobramento de painéis solares, para-sois e o próprio espelho do telescópio composto de várias células hexagonais.

Esq.: Aspecto do JW depois de desdobrado. Dir.: Comparação dos espelhos do HST com o JW.

Que comecem os trabalhos…

Na última terça feita (12 de julho de 2022) em uma conferência de imprensa global foram anunciadas as primeiras imagens que se mostraram mais nítidas do que qualquer outra já feita. Uma comparação do JW e o HST é um tanto forçada. O JW “enxerga” no infravermelho e HST cobre uma faixa mais ampla do espectro eletromagnético centrada no visível. Além disso o espelho do JW é quase o triplo do espelho do HST. Quanto maior espelho mais luz é captada e mais nitida é a imagem.

Infravermelho?

O infravermelho nos permite ver melhor através da poeira e o gás que envolve vários astros. Outra vantagem: devido ao desvio para o vermelho (efeito Doppler) objetos mais distantes tem sua cor deslocada para o infravermelho. Assim o JW pode ver mais longe e com melhor definição vários objetos de interesse: galáxias distantes, o centro da nossa galáxia e estrelas imersas em nebulosas.

Primeiras imagens

Os objetos escolhidos para inaugurar os trabalhos do JW representam o que há de mais interessante na astrofísica moderna. As imagens obtidas são coloridas artificialmente. As cores são obrigatóriamente falsas pois nossos olhos não enxergam no infravermelho. Assim foi preciso fazer uma adaptação da imagem ao que seria compreensível em uma foto no visível.

james webb
Esq.: SMACS 0723. Dir.: Quinteto de Stephan.

Grupo de galáxia SMACS 0723 – Esta foi a primeira imagem obtida pelo JW onde se pode ver diversas galáxias e imagens distorcidas por lentes gravitacionais. A resolução da imagem é surpreendente para objetos muito distantes: mais de 5 bilhões de anos-luz.

Quinteto de Stephan – Um grupo compacto de quatro galaxias, distantes de nós mais de 200 milhões de anos-luz. Uma quinta galaxia aparece no campo, esta está mais perto de nós (39 milhões de anos-luz) e sua proximidade ao quarteto é só aparente: uma coincidência de alinhamento. As fotos anteriores deste grupo foram realizada por outro telescópio infravermelho o Spitzer fora de ação desde janeiro de 2020.

james webb
Nebulosa Carina

Nebulosa Carina – É uma das maiores nebulosas da Via Láctea. Esta complexa e extensa nebulosa abriga diversos aglomerados de estrelas e umas das estrelas mais luminosas da nossa galáxia: Eta Carinae. Se encontra a mais de 6000 anos-luz de distância.

Esq.: Nebulosa do Anel Sul vista pelo JW. Dir.: mesmo objeto visto pelo Spitzer.

Nebulosa Anel do Sul – A aproximadamente 2000 anos-luz da Terra este tipo de nuvem de gás envolve estrelas mais antigas e chamamos de nebulosa planetária. Provavelmente o final da vida do nosso Sol será criar uma nebulosa deste tipo daqui a 5 bilhões de anos.

Nem só imagens …

james webb
Espectro da atmosfera de WASP-96 b

Espectro do Exoplaneta WASP-96 b – A maior parte dos dados realmente relevantes do ponto de vista científico nem sempre são imagens. Aqui vemos um espectro de um planeta gigante (pouco menor que metade do tamanho de Jupiter) a 1120 anos-luz da Terra. O espectro indica a presença de água na atmosfera do planeta. Apesar disso a atmosfera deste exoplaneta não se parece nada com a nossa. WASP-96 b se encontra muito perto da estrela principal e por isso é extremamente quente.

Vamos aguardar os dados que virão e que certamente vão redefinir nossa visão do cosmos.

Leia também

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades Notícias

Tau-Herculídes de 2022, Chuva ou Tempestade?

As chuvas de meteoros são um fenômeno celeste que causa grande interesse e uma de suas características mais marcantes é a imprevisibilidade quanto à taxa de meteoros que será observada. Em especial a Tau-Herculídeas que terá pico na madrugada de 30 para 31 de maio está causando alvoroço

Dada sua imprevisibilidade característica, a regra de ouro para as chuvas de meteoros é: vai ser boa? Não sabemos, mas, se possível, assista.

Chuvas de Meteoros acontecem quando a Terra cruza o rastro de poeira deixado por um cometa ou asteroide. A grande maioria das chuvas está associada a algum cometa mas há algumas associadas a um asteroide. Na medida em que o objeto segue sua órbita ele deixa poeira por onde passa e, a Terra, ao cruzar essa órbita, recebe em sua atmosfera parte da poeira deixada para trás. Estamos falando de fragmentos bem pequeninos, portanto, nenhuma chuva de meteoros representa qualquer risco.

Para cada chuva há uma taxa de meteoros esperada, e essa taxa é calculada por uma série histórica. Ou seja, em cada chuva observa-se a quantidade de meteoros por hora e anota-se. Esse número anotado ano após ano indica uma tendência que nos faz esperar chuvas mais intensas ou menos intensas.

Compreendendo o mecanismo de formação das chuvas de meteoros, podemos verificar uma informação importante: chuvas de meteoros acontecem todo ano, e são várias, de modo que não estamos falando de um fenômeno exatamente raro.

Agora, vejamos o nome das chuvas. Elas são batizadas utilizando-se o nome da constelação onde está o radiante (ponto no céu de onde parecem estar saindo os meteoros) e a letra grega que indica a estrela mais próxima naquela constelação. Portanto, o radiante da chuva Tau-Herculídeas está(ria) posicionado próximo à estrela Tau da constelação de Hércules. Entretanto, especialmente esta chuva, que foi originalmente prevista para ser observada em Hércules, acontece na constelação do Boieiro.

No Rio de Janeiro, a constelação do Boieiro pode ser vista desde o início da noite de 30 de maio para quem tem o horizonte nordeste livre. Estará em sua melhor condição de observação por volta das 22h. É uma constelação do hemisfério Norte, portanto, estará baixa no horizonte carioca. A região norte do Brasil é a melhor para assistir à Tau-Herculídeas. O radiante da chuva está posicionado próximo à estrela Arcturus, a mais brilhante da constelação do Boieiro.

Constelação de Boieiro bem ao norte no céu do Rio de Janeiro. Carta Celeste do Rio de Janeiro às 22h00 de 31 de maio de 2022.

Boieiro em melhor condição de observação no Norte do Brasil. Carta Celeste de Manaus ás 23h30 de 30 de maio de 2022.

E por que estão chamando essa chuva de tempestade? Acontece que o cometa 73/P Schwassman-Wachmann 3, ou SW 3, passou por um processo de fragmentação em 1995. E os fragmentos dessa fragmentação também se fragmentaram posteriormente e o cometa “pai” deixou em seu caminho até agora 69 fragmentos conhecidos. Fragmentação de cometas também não é algo raro de acontecer, principalmente com os de curto período, como o é o caso de SW3.

Assim, se os detritos resultantes da fragmentação de 1995 tiverem sido ejetados com uma velocidade acima do normal, cerca de duas vezes e meia, é possível sim que tenhamos sim, uma chuva mais intensa porque teríamos uma quantidade maior de fragmentos atingindo a Terra. Apenas essa a razão. 

Imagem obtida pelo Telescópio Espacial Hubble em 2006, mostrando fragmentos do SW3 se fragmentando em pedaços ainda menores. NASA / ESA / H. Weaver (JHU / AP) / M. Jäger / G. Rhemann.

Mas, como em todas as chuvas de meteoros, a palavra de ordem é imprevisibilidade. Não temos nenhuma razão para supor que os detritos da fragmentação do SW3 em 1995 estejam viajando acima da velocidade normal. Mas, quem sabe?

De qualquer forma, tome um cuidado importante. As “chuvas” de meteoros não são exatamente chuvas… são uma oportunidade de observar mais meteoros que em outras noites, mas, em geral, observa-se alguns meteoros por hora. Diferente de uma chuva propriamente dita em que temos milhares de pingos de água por hora.

Outro detalhe importante é que serão observados aqueles meteoros que puderem ser vistos com a luminosidade do seu céu. Em um centro urbano, tipicamente muito iluminado, só serão observados os mais brilhantes, enquanto numa região afastada da iluminação serão observados os mais brilhantes e os menos brilhantes. Portanto, seu local de observação também vai influenciar em quantos meteoros você observará.

Então, mesmo não tendo certeza se teremos uma chuva ou uma tempestade, eu não apostaria na tempestade. Aposto numa chuva, bonita, como todas as outras.

Para observar a Tau-Herculídeas:

Melhor localização: Onde se tenha o horizonte norte e nordeste livres de prédios, montanhas ou árvores, e afastado da iluminação urbana. As cidades mais ao norte do país têm melhores condições de observação para essa chuva de meteoros.

Para onde olhar no céu: Utilize as cartas celestes acima colocando-as sobre sua cabeça, coincidindo os pontos cardeais da Carta com os pontos cardeais do seu local de observação e procure a estrela mais brilhante da constelação do Boieiro. O radiante de Tau-Heruclídeas estará ali perto.

Equipamento para observação: Toalha para deitar no chão, cadeira, esteira e travesseiro (esqueça telescópio ou binóculo).

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Imagem do Buraco Negro no Centro da Galáxia

Por Naelton Mendes de Araujo – Astrônomo da Fundação Planetário da Cidade do Rio de Janeiro

O instrumento

Para vasculhar o Universo usamos vários tipos de radiação eletromagnéticas. Algumas não são captadas pelos nossos olhos e nem por nenhum de nossos sentidos.

Os radiotelescópios usam antenas para captar ondas de rádio provenientes do espaço.  A figura mais comum que nos vem à mente são antenas parabólicas. Quanto maior o disco, maior a resolução, isto é, ,mais detalhes pequenos o instrumento pode distinguir. Imagine agora se combinamos os dados de antenas distintas numa só imagem? Chamamos isso de interferometria. Se fizermos uma rede de antenas cobrindo distâncias continentais, teremos como resultado algo semelhante a um disco de proporções da ordem Terra.

Localização dos Radiotelescópios do EHT distribuídos pelo globo.
Radiotelescópio ALMA no Andes
Radiotelescópio no Pólo Sul

Foi exatamente isso que o Event Horizon Telescope (ETH) fez. Em 2019 esse arranjo de 13 conjuntos de antenas, em 4 continentes, nos deu a primeira imagem de um buraco negro na galáxia M87.

Buraco negro na galáxia M87 pelo EHT

O objeto

Na verdade não se pode ver um buraco negro. Só observamos a matéria estelar que cai no buraco negro. Este anel da matéria espiralando em direção ao buraco negro é chamado disco de acresção e emite muita radiação. Isto acontece pouco antes de entrar no chamado horizonte de eventos e, a partir daí, nada mais escapa. 

Sagitário A é uma  extensa fonte de rádio bem conhecida dos astrofísicos desde 1974, mas só agora, com o EHT, podemos ver detalhes do seu disco de acresção. Não havia nenhum instrumento até hoje capaz de realizar tal façanha. Este objeto se encontra a 26 mil anos-luz e é o que se usou chamar de buraco negro supermassivo.

Buraco Negro Sagitário A mapeado pelo EHT
Sagitário A mapeado pelo EHT

Os buracos negros estelares são formados no fim da vida de uma estrela com no mínimo 10 massas solares. Os buracos negros supermassivos foram formados por imensas nuvens de gás ou por milhões de estrelas que se amontoaram em aglomerados estelares. Isto aconteceu no início do Universo. Buracos negros supermassivos são encontrados no centro das galáxias.

É uma foto?

Temos que ter em mente a diferença entre foto e imagem. No sentido estrito essa não é uma fotografia. Não é resultado da luz visível obtida por um dispositivo óptico. É uma representação visual de um conjunto de dados de rádio. Está mais para um mapa e as cores não são reais: os tons de amarelo e laranja apenas representam intensidades de radiação.

A vantagem deste tipo de imagem é sua alta resolução que nos permite ver detalhes da estrutura antes invisíveis.

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Um eclipse lunar quase total

No fim da madrugada de amanhã (19 de novembro), acontecerá o eclipse parcial da Lua mais longo do século. O eclipse lunar é um dos fenômenos celestes mais democráticos que existem, pois não é necessário o uso de equipamento para acompanhá-lo. Apesar de não ser tão espetacular quanto os eclipses totais, o fenômeno de amanhã será uma boa oportunidade para apreciar o resultado de um alinhamento cósmico que encanta a humanidade desde épocas remotas.

O eclipse lunar acontece quando o Sol, a Terra e a Lua se alinham, fazendo com que a Lua passe pela sombra da Terra. Quando a Lua inteira entra na parte mais escura da sombra da Terra, chamada de umbra, ocorre o eclipse lunar total.

O eclipse de amanhã será parcial, ou seja, apenas parte da superfície lunar estará dentro da umbra. No entanto, por muito pouco não teremos um eclipse total, uma vez que, no ápice do fenômeno, 97% da superfície do nosso satélite natural estará na umbra.

Infelizmente o carioca só poderá observar o início do eclipse, pois a Lua estará quase se pondo, momentos antes do nascer do Sol. Procure um local onde o poente esteja livre de prédios e montanhas (lembre-se, a Lua estará bem baixa!). Às 4h19min (hora de Brasília) de amanhã, a Lua começará a entrar na umbra da Terra e o eclipse parcial terá início. À medida que a Lua se mover para a umbra, parecerá que o disco lunar está sendo “mordido”, e a parte da Lua dentro da umbra aparecerá bem escura. O Sol nascerá às 5h e, antes disso, a claridade do alvorecer irá atrapalhar a observação. O auge do fenômeno acontecerá às 6h, quando a Lua já estará abaixo do horizonte. A imagem abaixo mostra a parte da Lua que estará “mordida” no momento que a Lua desaparecer no horizonte oeste.

A chegada de uma frente fria provavelmente trará chuva para a cidade do Rio de Janeiro neste fim de semana, o que poderá impedir a observação do fenômeno. A boa notícia é que o próximo eclipse lunar será total, e poderá ser visto inteirinho, do começo ao fim, do Rio de Janeiro. Ele ocorrerá na noite do dia 15 para 16 de maio de 2022.

Quem quiser poderá acompanhar uma transmissão ao vivo do eclipse parcial:

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Caçadores de satélites: ISS, Júpiter e Saturno juntos no céu

O alvorecer do dia 20 de março será bem bacana para quem gosta de acompanhar as passagens de satélites. A Estação Espacial Internacional (ISS – International Space Station) terá uma passagem bem favorável para os moradores do Rio de Janeiro, Minas Gerais, São Paulo, Espírito Santo e Goiás. Além disso, os planetas Júpiter e Saturno estarão visíveis nas proximidades.


Quando a passagem da estação se dá em condições favoráveis, qualquer pessoa pode observar usando seus próprios olhos. Isso mesmo, não há necessidade de telescópio. Na verdade, já que o evento é relativamente curto, o telescópio pode até atrapalhar. Basta apenas pegar a carta celeste e se dirigir para um local onde você tenha acesso ao céu e, de preferência, com o horizonte livre e sem luz urbana.

Passagem da ISS entre Vênus e Marte na França, em 15/02/2017. Crédito: David Duarte.

A ISS é visível porque reflete a luz do Sol, da mesma forma que a Lua. Ao contrário da Lua, ela não pode ser observada durante o dia mas, sob certas circunstâncias, momentos antes do amanhecer ou após o pôr do Sol. Para alguns, ela lembra uma estrela, só que em movimento. Para outros, um avião, com a exceção de que a ISS não apresenta luz piscando.

A carta celeste abaixo indica a passagem da ISS por entre as constelações, para o amanhecer do dia 20 de março. Ela foi confeccionada para a Cidade do Rio de Janeiro e arredores. Se você estiver em outra cidade, poderá obter uma carta adequada AQUI (lembre-se de informar a sua cidade antes de gerar a carta). Note que alguns horários estão indicados na carta, uma vez que precisamos saber não somente para onde olhar, mas também, quando!


Carta celeste para a passagem da ISS no amanhecer do dia 20 de março, para a Cidade do Rio de Janeiro e arredores. Norte está em cima e sul embaixo. Leste à esquerda.

Aproveite a oportunidade e acompanhe o início da temporada de visibilidade dos planetas gigantes Júpiter e Saturno. Eles estarão bem visíveis no horizonte leste, momentos antes do Sol nascer, na constelação do Capricórnio. A passagem da ISS é também uma excelente ocasião para aprender a identificar algumas das principais constelações usando a carta celeste.

Viajando a 440km do solo, e incríveis 27.000km/h, a ISS completa uma volta ao redor da Terra em apenas 93 minutos. Isso significa que esses eventos não são raros. Então não fique triste caso não consiga acompanhar dessa vez. No caso de alguém tirar foto do evento e desejar compartilhar conosco, fique à vontade!

Vamos torcer para o céu colaborar. Boa caçada!

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades Notícias

Marte: Esperança, Questões Celestiais e Perseverança

Por Naelton Mendes de Araujo – Astrônomo da Fundação Planetário da Cidade do Rio de Janeiro

Marte sempre foi o maior alvo da pesquisa espacial e este mês de fevereiro de 2021 recebe três visitas, quase simultâneas, de três missões de exploração.

Esperança Arábe

Acima e a esquerda representação da sonda em modo de cruzeiro, abaixo e a esquerda sonda sendo preparada antes do lançamento, a direita diagrama das etapas da missão

A missão inaugural do programa de exploração planetária dos Emirados Árabes chama-se Hope (em árabe Al Amal que siginifica Esperança) e foi lançada com sucesso em 20 de junho de 2020. O programa, orçado em US$200 milhões, foi produto de uma colaboração com o Japão (que forneceu o foguete lançador) e três universidades americanas. Trata-se de um sonda orbital para estudar a atmosfera marciana através de câmeras de alta resolução no infravermelho e ultravioleta. Espera-se coletar uma enorme quantidade de dados da dinâmica atmosférica marciana. A previsão é de que a sonda entre e órbita no próximo dia 09 de fevereiro de 2021.

ver https://www.emiratesmarsmission.ae/

Questões Celestiais Chinesas

A esquerda representação do rover em funcionamento, ao centro as três partes da missão: orbiter, rover e lander; a direita acima sonda em modo de cruzeiro, a direita abaixo sonda antes do lançamento

A China tem se tornado um potência espacial inquestionável desde que lançou sua missões tripuladas ao redor da Terra e sondas a Lua. A primeira missão chinesa a Marte foi em parceria com a Rússia em 2011 que não obteve sucesso.
Agora chegou a hora de mirar Marte novamente. A sonda chinesa chama-se Tianwen (Questões Celestes) e trata-se de uma missão completa: orbiter, lander e rover. Foi lançada em 23 de julho de 2020 e deve chegar a Marte no dia 10 de fevereiro de 2021. O lugar de pouso programado chama-se Utopia Planitia, famoso na série Star Trek por ser o lugar ficticio onde a Enterprise-D e a Voyager foram construídas: nos estaleiros da Federação dos Planetas. O principal objetivo da sonda é buscar evidências de vida (passada ou atual) e avaliar o meio ambiente marciano, incluíndo sondas de penetração do solo. O primeiro vôo tripulado chinês ao planeta está agendado para as próximas décadas.

ver https://en.wikipedia.org/wiki/Tianwen-1

Perseverança e Engenhosidade Americanas

A esquerda a sonda em modo de cruzeiro, acima drone Ingenuity, abaixo a direita: rover Perseverance.

O Programa de Exploração de Marte da Nasa já enviou quatro rovers ao planeta que se tornaram famosos: Sojourner (1997), Spirit (2004), Oportunity (2004) e o Curiosity (2012). O rover Perseverance (Perseverança) vai a bordo da sonda Mars2020 junto com um companheiro pioneiro: o drone Ingenuity (Engenhosidade). O local de pouso é a Cratera Jezero que há 3.7 bilhões de anos atrás deve ter abrigado um um lago no um delta de rio onde acumulou sedimentos que podem ter preservado bem bioassinaturas (sinais químicos da presença de vida). A sonda custou algo em torno de US$2,1 bilhão e traz uma quantidade enorme de instrumentos. O drone Ingenuity é um helicóptero robótico que pretende escoltar o Perseverance, procurando locais promissores para prospectar. Essa será a primeira experiência de um objeto voador em outro planeta testando estabilidade e manobrabilidade. A previsão de chegada é dia 18 de fevereiro. Outra expectativa desta missão é recolher amostras para, em uma futura missão, retornar a Terra.

ver https://mars.nasa.gov/mars2020/

Teremos em breve muitas informações interessantes sobre o planeta Marte. Fiquem atentos.

Categories
Coluna do Astrônomo Conteúdo científico

Cultivo de cianobactérias usando a luz das estrelas

A busca de vida fora da Terra é um dos ramos da astronomia moderna que mais despertam o interesse dos cientistas e de pessoas em geral. A inquietante pergunta “estamos sós no Universo?” tem percorrido o imaginário por séculos, e ganhou novos contornos em 2016, quando se descobriu que ao redor da estrela mais próxima da Terra, uma pequena anã vermelha distante 4,25 anos-luz, girava um planeta com condições de abrigar água no estado líquido. A excitação da descoberta não apaga o fato de que estrelas anãs vermelhas têm uma luminosidade mais fraca e avermelhada do que a luz que sustenta a vida na Terra. E a dúvida persistente na mente dos astrobiólogos tem sido: estrelas bem menos quentes que o nosso Sol poderiam hospedar vida?

As anãs vermelhas são alvos promissores para a busca de exoplanetas, uma vez que são pequenas e pouco luminosas, de forma que planetas que eventualmente passem na frente da estrela são mais facilmente detectados. Isso porque uma das maneiras de inferir a presença de um planeta se dá por meio de um fenômeno parecido com o eclipse, mas que é chamado de “trânsito”: quando um planeta passa na frente de uma estrela, instrumentos na Terra detectam uma queda na luminosidade estelar.

Ilustração do trânsito do exoplaneta WASP-107b, orbitando uma estrela distante 200 anos-luz. Crédito: ESA/Hubble, NASA, M. Kornmesser

Esse é um dos métodos mais eficientes de descoberta de exoplanetas: o catálogo de exoplanetas da NASA contém mais de 4.300 objetos, dos quais, 3.294 foram descobertos por meio dos trânsitos (https://exoplanets.nasa.gov/).

Como as anãs vermelhas têm pouca massa, os planetas têm órbitas mais próximas e portanto, são mais rápidos, produzindo trânsitos periódicos facilmente monitorados. Como era de se esperar, um grande número de exoplanetas foi encontrado ao redor de anãs vermelhas, vários deles na chamada zona de habitabilidade (região na qual se acredita que a água possa existir no estado líquido; ou seja, o exoplaneta está nem muito longe da estrela central, a ponto da água estar congelada, nem muito perto, para que a luminosidade estelar evapore a água). Porém a dúvida permanece: funções biológicas básicas como a fotossíntese podem ocorrer em condições mais frias, com baixa luminosidade avermelhada?

As primeiras respostas para essa pergunta começaram a surgir, graças ao trabalho de uma equipe do Observatório Astronômico de Padova, na Itália, que culminou com a publicação dos resultados na Revista Life, em 12 de janeiro deste ano. Nos últimos anos foram descobertas cianobactérias extremófilas com clorofila, que conseguem sobreviver em ambientes de pouquíssima luz, onde outras bactérias morreriam. O grupo italiano decidiu então pesquisar a possibilidade dessas cianobactérias sobreviverem sob a luz de uma estrela anã vermelha. Para isso, a equipe simulou um ambiente com luz similar à produzida por estrelas anãs vermelhas e verificou o seu efeito em vários tipos de bactérias.

Essas bactérias incluíam a Chlorogloeopsis Thermalis, uma cianobactéria extremófila, que aparece em fontes termais, e é capaz de fotossintetizar na presença da luz vermelha próxima ao infravermelho. O resultado foi promissor: a bactéria se desenvolveu sob a luz simulada de uma anã vermelha!

Crédito: Ezume Images/Shutterstock

O experimento demonstrou que estrelas anãs vermelhas produzem luz que alguns seres vivos podem capturar para realizar a fotossíntese. Isso implica num ambiente onde a vida pode ser sustentável?

Infelizmente as estrelas anãs vermelhas são propensas a emitir rápidas e violentas explosões com intensa emissão de ultravioleta, o que poderia inviabilizar a presença de substâncias voláteis, como a água. No entanto, se a fotossíntese for possível nesses exoplanetas, eles podem exibir sinais reveladores para nós observadores distantes, como por exemplo, uma atmosfera rica em oxigênio (sabe-se que o oxigênio da Terra está associado à fotossíntese, principalmente das algas marinhas).

Alguns geólogos planetários consideram que uma atmosfera rica em oxigênio poderia também ser criada pela luz solar transformando a água em hidrogênio e oxigênio. Neste caso, um registro mais convincente seria uma queda repentina de luz infravermelha causada pela absorção fotossintética na superfície do planeta. O Telescópio Espacial James Webb (https://www.jwst.nasa.gov/), substituto do Hubble, está programado para ser lançado no fim de 2021 e deve ser capaz de estudar, dentre outras coisas, esse aspecto da natureza dos exoplanetas. Aguardamos ansiosos!


Espelho primário do Telescópio Espacial James Webb. Crédito: NASA.
Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Estrela de Natal: Conjunção entre Júpiter e Saturno

O final do ano reserva um fenômeno astronômico marcante para a noite do dia 21 de dezembro, quando os dois maiores planetas do Sistema Solar estarão muito próximos no céu, durante o fenômeno da conjunção. Trata-se de um “presente de natal” antecipado para os amantes da astronomia. Os planetas Júpiter e Saturno estarão tão próximos que parecerão formar um “planeta duplo”. Trata-se de um evento único na vida da maioria das pessoas. Saiba um pouco mais sobre o fenômeno, e como observá-lo.

Quando acontece uma conjunção, dois ou mais corpos celestes aparecem próximos no céu. Os corpos celestes envolvidos numa conjunção podem ser: Sol, Lua, planetas, estrelas e satélites artificiais.

Conjunção de Vênus (mais brilhante) com o aglomerado aberto das Plêiades em abril de 2012. Crédito: Bob King.
Conjunção entre Vênus e Marte (avermelhado) em 20/02/2015.

Uma conjunção muito importante é a Sol-Marte. Nessas ocasiões, que ocorrem a cada 26 meses, o planeta vermelho fica praticamente atrás do Sol do ponto de vista da Terra. Nessa geometria celeste, além de não podermos observar Marte no céu, as comunicações com as sondas em solo marciano são reduzidas, ou até mesmo, interrompidas. A razão é que por conta do alinhamento, as comunicações de rádio são perturbadas pelo Sol, e mensagens distorcidas devem ser evitadas a todo custo, para preservar os equipamentos.

Ilustração das posições de Marte (órbita mais externa), Sol (posição central) e Terra durante a conjunção Sol-Marte. Durante essas ocasiões, que ocorrem a cada 26 meses, Marte passa praticamente atrás do Sol para um observador na Terra. Crédito: NASA/JPL – Caltech.

A astronomia tem uma definição precisa para conjunção de corpos celestes, que não se resume ao “estar próximo” no céu, mas tem a ver com o sistema de coordenadas celestes adotado. Por exemplo, se o sistema de coordenadas adotado for o Eclíptico, o plano de referência é o plano da órbita da Terra ao redor do Sol. Assim, qualquer objeto celeste pode ser localizado pelas coordenadas latitude eclíptica e longitude eclíptica, e por definição uma conjunção ocorre quando dois ou mais corpos têm a mesma longitude eclíptica. Essa definição técnica é interessante, pois evita uma definição vaga de conjunção, baseada em proximidade: afinal, se a condição necessária for simplesmente a proximidade de dois corpos no céu, qual seria a distância máxima para o evento ainda ser chamado de conjunção?

Então nem sempre uma aglomeração de astros no céu é de fato uma conjunção? Isso mesmo, vai depender da tal coordenada eclíptica. Por acaso, a conjunção Júpiter-Saturno (eclíptica) desde ano ocorrerá por voltas das 15h20min, praticamente na mesma hora da máxima aproximação. Mas deixemos esse detalhe técnico para os técnicos, afinal a beleza do fenômeno não se altera com essa informação. E não se preocupe com o horário, pois como veremos mais a frente, os planetas são muito lentos e não fará muita diferença observar o evento algumas horas depois, ao anoitecer.

As conjunções Júpiter-Saturno são bem impressionantes, pois os planetas se destacam no céu pelos seus brilhos intensos. Uma vez a cada 20 anos, os dois maiores planetas do Sistema Solar parecem se encontrar no céu do ponto de vista do observador na Terra. Durante a próxima conjunção Júpiter-Saturno, que acontecerá no dia 21 de dezembro, os planetas parecerão estar se tocando. Mas não se iluda, a proximidade é um efeito de perspectiva, e será apenas aparente. Na verdade eles estarão afastados entre si mais 700 milhões de quilômetros!

Ilustração (fora de escala) da configuração dos planetas durante a conjunção. Crédito: Lowell Observatory.

Mas qual o motivo do intervalo de 20 anos? Júpiter e Saturno são planetas bem distantes do Sol e, portanto, se movem bem lentamente no céu: enquanto a Terra leva um ano para completar uma volta ao redor do Sol, Júpiter precisa de cerca de 12 anos e Saturno cerca de 30 anos. Tais órbitas longas fazem com que, do ponto de vista da Terra, encontros entre os dois só sejam possíveis a cada 20 anos*. É como se fosse uma corrida de Fórmula 1 e Júpiter, por estar mais próximo do Sol e, portanto mais rápido, desse uma volta em Saturno a cada 20 anos.

Ilustração da conjunção Júpiter-Saturno em 21 de dezembro de 2020. Por causa do alinhamento, do ponto de vista da Terra, os planetas Júpiter e Saturno aparecem próximos no céu.

Na maioria das conjunções a separação entre Júpiter e Saturno é de cerca de 1 grau, o que corresponde a aproximadamente duas Luas Cheias lado a lado. Neste ano eles estarão separados por apenas 6 minutos de arco, ou 1/10 do grau. Isso corresponde a apenas 1/5 do tamanho da Lua.

Na maioria das conjunções Júpiter-Saturno, os dois planetas se encontram afastados cerca de 1 grau, o que corresponde a duas Luas lado a lado. Crédito: Lowell Observatory.
Na conjunção do dia 21 de dezembro de 2020, os planetas estarão separados por apenas 6 minutos de arco, ou 1/10 do grau. Isso corresponde a apenas 1/5 do diâmetro da Lua. Crédito: Lowell Observatory.

Alguns estudiosos especulam que a história bíblica da Estrela de Belém que conduziu os Três Reis Magos do Oriente ao encontro do menino Jesus, está associada a uma conjunção Tripla de Júpiter e Saturno. Isso mesmo, você leu direito. Em intervalos de tempos irregulares, podem ocorrer ao longo de meses, uma sequência de três conjunções Júpiter-Saturno. A última conjunção tripla foi em 1981, enquanto a próxima é esperada para 2238**. No ano 7 a.C., ocorreram conjunções em 29 de maio, 30 de setembro e 5 de dezembro, tempo suficiente para os três viajarem de sua terra natal, no Oriente, até encontrar a criança na manjedoura. Os dois planetas brilhantes convergindo num ponto perto do horizonte, certamente indicaria uma direção a ser seguida. Por essa razão, a conjunção desde ano tem sido frequentemente chamada de “Estrela de Natal”.

Será fácil acompanhar a bela dança do par de planetas até o seu ápice por ocasião da conjunção. Basta olhar para a direção do poente, logo após o pôr do Sol, nas próximas noites. Como os planetas estarão próximos do horizonte, teremos cerca de uma hora para observar antes do desaparecimento no horizonte, e lugares com montanhas ou prédios devem ser evitados. Na noite do dia 16 de dezembro, a Lua Crescente estará próxima aos dois, numa bela configuração.


Ilustração do céu voltado para o horizonte oeste, para a noite do dia 16 de dezembro, por volta das 19h30. Crédito: Stellarium Web Online Star Map.

A conjunção anterior entre Júpiter e Saturno ocorreu no ano 2000, mas foi um desastre para o observador: além de os planetas estarem mais afastados entre si (cerca de 2,5 vezes o diâmetro da Lua), a observação era quase impossível pois o Sol se encontrava nas proximidades.

A última conjunção Júpiter-Saturno com proximidade entre os planetas similar à de 2020, ocorreu em 1623, alguns anos após as primeiras observações telescópicas de Galileu Galilei. No entanto, mais uma vez o Sol estava próximo, impedindo a observação do fenômeno.

A mais espetacular conjunção dos planetas gigantes nos últimos 1.000 anos ocorreu em 1226, quando os planetas estiveram 3 vezes mais próximos entre si do que no evento de 2020. Isso ocorreu quase 400 anos antes do surgimento do telescópio.

Você quer mais motivos para não perder a próxima conjunção envolvendo Júpiter e Saturno? Nas conjunções que ocorrerão em 2040 e 2060, as separações entre os planetas serão bem maiores. Somente em 2080 teremos uma conjunção tão espetacular quanto a deste ano, com uma separação similar entre os planetas. Ou seja, o evento do dia 21 de dezembro de 2020 será único para a maioria de nós.

Feliz Natal!

*O intervalo médio mais exato entre cada conjunção de Júpiter e Saturno é de 19,85 anos, sendo determinado principalmente pelos períodos orbitais de Júpiter (11,86 anos) e de Saturno (29,46 anos).

**Fonte: “Conjunctions of Jupiter and Saturn”, The Journal of Royal Astronomical Society of Canada (2000), p. 174.