Usamos cookies em nosso site para lhe dar a experiência mais relevante, lembrando suas preferências e repetindo visitas. Ao clicar em "Aceitar tudo", você concorda com o uso de TODOS os cookies. No entanto, você pode visitar "Configurações de cookies" para fornecer um consentimento controlado.

Visão geral da privacidade

Este site usa cookies para melhorar sua experiência enquanto você navega pelo site. Destes, os cookies categorizados conforme necessário são armazenados no seu navegador, pois são essenciais para o funcionamento das funcionalidades básicas do site. T...

Sempre ativado

Os cookies necessários são absolutamente essenciais para que o site funcione corretamente. Esta categoria inclui apenas cookies que garantem funcionalidades básicas e recursos de segurança do site. Esses cookies não armazenam nenhuma informação pessoal.

Quaisquer cookies que podem não ser particularmente necessários para o funcionamento do site e são usados especificamente para coletar dados pessoais do usuário através de análises, anúncios, outros conteúdos incorporados são denominados como cookies não necessários. É obrigatório obter o consentimento do usuário antes de executar esses cookies em seu site.

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades Notícias

Tau-Herculídes de 2022, Chuva ou Tempestade?

As chuvas de meteoros são um fenômeno celeste que causa grande interesse e uma de suas características mais marcantes é a imprevisibilidade quanto à taxa de meteoros que será observada. Em especial a Tau-Herculídeas que terá pico na madrugada de 30 para 31 de maio está causando alvoroço

Dada sua imprevisibilidade característica, a regra de ouro para as chuvas de meteoros é: vai ser boa? Não sabemos, mas, se possível, assista.

Chuvas de Meteoros acontecem quando a Terra cruza o rastro de poeira deixado por um cometa ou asteroide. A grande maioria das chuvas está associada a algum cometa mas há algumas associadas a um asteroide. Na medida em que o objeto segue sua órbita ele deixa poeira por onde passa e, a Terra, ao cruzar essa órbita, recebe em sua atmosfera parte da poeira deixada para trás. Estamos falando de fragmentos bem pequeninos, portanto, nenhuma chuva de meteoros representa qualquer risco.

Para cada chuva há uma taxa de meteoros esperada, e essa taxa é calculada por uma série histórica. Ou seja, em cada chuva observa-se a quantidade de meteoros por hora e anota-se. Esse número anotado ano após ano indica uma tendência que nos faz esperar chuvas mais intensas ou menos intensas.

Compreendendo o mecanismo de formação das chuvas de meteoros, podemos verificar uma informação importante: chuvas de meteoros acontecem todo ano, e são várias, de modo que não estamos falando de um fenômeno exatamente raro.

Agora, vejamos o nome das chuvas. Elas são batizadas utilizando-se o nome da constelação onde está o radiante (ponto no céu de onde parecem estar saindo os meteoros) e a letra grega que indica a estrela mais próxima naquela constelação. Portanto, o radiante da chuva Tau-Herculídeas está(ria) posicionado próximo à estrela Tau da constelação de Hércules. Entretanto, especialmente esta chuva, que foi originalmente prevista para ser observada em Hércules, acontece na constelação do Boieiro.

No Rio de Janeiro, a constelação do Boieiro pode ser vista desde o início da noite de 30 de maio para quem tem o horizonte nordeste livre. Estará em sua melhor condição de observação por volta das 22h. É uma constelação do hemisfério Norte, portanto, estará baixa no horizonte carioca. A região norte do Brasil é a melhor para assistir à Tau-Herculídeas. O radiante da chuva está posicionado próximo à estrela Arcturus, a mais brilhante da constelação do Boieiro.

Constelação de Boieiro bem ao norte no céu do Rio de Janeiro. Carta Celeste do Rio de Janeiro às 22h00 de 31 de maio de 2022.

Boieiro em melhor condição de observação no Norte do Brasil. Carta Celeste de Manaus ás 23h30 de 30 de maio de 2022.

E por que estão chamando essa chuva de tempestade? Acontece que o cometa 73/P Schwassman-Wachmann 3, ou SW 3, passou por um processo de fragmentação em 1995. E os fragmentos dessa fragmentação também se fragmentaram posteriormente e o cometa “pai” deixou em seu caminho até agora 69 fragmentos conhecidos. Fragmentação de cometas também não é algo raro de acontecer, principalmente com os de curto período, como o é o caso de SW3.

Assim, se os detritos resultantes da fragmentação de 1995 tiverem sido ejetados com uma velocidade acima do normal, cerca de duas vezes e meia, é possível sim que tenhamos sim, uma chuva mais intensa porque teríamos uma quantidade maior de fragmentos atingindo a Terra. Apenas essa a razão. 

Imagem obtida pelo Telescópio Espacial Hubble em 2006, mostrando fragmentos do SW3 se fragmentando em pedaços ainda menores. NASA / ESA / H. Weaver (JHU / AP) / M. Jäger / G. Rhemann.

Mas, como em todas as chuvas de meteoros, a palavra de ordem é imprevisibilidade. Não temos nenhuma razão para supor que os detritos da fragmentação do SW3 em 1995 estejam viajando acima da velocidade normal. Mas, quem sabe?

De qualquer forma, tome um cuidado importante. As “chuvas” de meteoros não são exatamente chuvas… são uma oportunidade de observar mais meteoros que em outras noites, mas, em geral, observa-se alguns meteoros por hora. Diferente de uma chuva propriamente dita em que temos milhares de pingos de água por hora.

Outro detalhe importante é que serão observados aqueles meteoros que puderem ser vistos com a luminosidade do seu céu. Em um centro urbano, tipicamente muito iluminado, só serão observados os mais brilhantes, enquanto numa região afastada da iluminação serão observados os mais brilhantes e os menos brilhantes. Portanto, seu local de observação também vai influenciar em quantos meteoros você observará.

Então, mesmo não tendo certeza se teremos uma chuva ou uma tempestade, eu não apostaria na tempestade. Aposto numa chuva, bonita, como todas as outras.

Para observar a Tau-Herculídeas:

Melhor localização: Onde se tenha o horizonte norte e nordeste livres de prédios, montanhas ou árvores, e afastado da iluminação urbana. As cidades mais ao norte do país têm melhores condições de observação para essa chuva de meteoros.

Para onde olhar no céu: Utilize as cartas celestes acima colocando-as sobre sua cabeça, coincidindo os pontos cardeais da Carta com os pontos cardeais do seu local de observação e procure a estrela mais brilhante da constelação do Boieiro. O radiante de Tau-Heruclídeas estará ali perto.

Equipamento para observação: Toalha para deitar no chão, cadeira, esteira e travesseiro (esqueça telescópio ou binóculo).

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Imagem do Buraco Negro no Centro da Galáxia

O instrumento

Para vasculhar o Universo usamos vários tipos de radiação eletromagnéticas. Algumas não são captadas pelos nossos olhos e nem por nenhum de nossos sentidos.

Os radiotelescópios usam antenas para captar ondas de rádio provenientes do espaço.  A figura mais comum que nos vem à mente são antenas parabólicas. Quanto maior o disco, maior a resolução, isto é, ,mais detalhes pequenos o instrumento pode distinguir. Imagine agora se combinamos os dados de antenas distintas numa só imagem? Chamamos isso de interferometria. Se fizermos uma rede de antenas cobrindo distâncias continentais, teremos como resultado algo semelhante a um disco de proporções da ordem Terra.

Localização dos Radiotelescópios do EHT distribuídos pelo globo.
Radiotelescópio ALMA no Andes
Radiotelescópio no Pólo Sul

Foi exatamente isso que o Event Horizon Telescope (ETH) fez. Em 2019 esse arranjo de 13 conjuntos de antenas, em 4 continentes, nos deu a primeira imagem de um buraco negro na galáxia M87.

Buraco negro na galáxia M87 pelo EHT

O objeto

Na verdade não se pode ver um buraco negro. Só observamos a matéria estelar que cai no buraco negro. Este anel da matéria espiralando em direção ao buraco negro é chamado disco de acresção e emite muita radiação. Isto acontece pouco antes de entrar no chamado horizonte de eventos e, a partir daí, nada mais escapa. 

Sagitário A é uma  extensa fonte de rádio bem conhecida dos astrofísicos desde 1974, mas só agora, com o EHT, podemos ver detalhes do seu disco de acresção. Não havia nenhum instrumento até hoje capaz de realizar tal façanha. Este objeto se encontra a 26 mil anos-luz e é o que se usou chamar de buraco negro supermassivo.

Buraco Negro Sagitário A mapeado pelo EHT
Sagitário A mapeado pelo EHT

Os buracos negros estelares são formados no fim da vida de uma estrela com no mínimo 10 massas solares. Os buracos negros supermassivos foram formados por imensas nuvens de gás ou por milhões de estrelas que se amontoaram em aglomerados estelares. Isto aconteceu no início do Universo. Buracos negros supermassivos são encontrados no centro das galáxias.

É uma foto?

Temos que ter em mente a diferença entre foto e imagem. No sentido estrito essa não é uma fotografia. Não é resultado da luz visível obtida por um dispositivo óptico. É uma representação visual de um conjunto de dados de rádio. Está mais para um mapa e as cores não são reais: os tons de amarelo e laranja apenas representam intensidades de radiação.

A vantagem deste tipo de imagem é sua alta resolução que nos permite ver detalhes da estrutura antes invisíveis.

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Um eclipse lunar quase total

No fim da madrugada de amanhã (19 de novembro), acontecerá o eclipse parcial da Lua mais longo do século. O eclipse lunar é um dos fenômenos celestes mais democráticos que existem, pois não é necessário o uso de equipamento para acompanhá-lo. Apesar de não ser tão espetacular quanto os eclipses totais, o fenômeno de amanhã será uma boa oportunidade para apreciar o resultado de um alinhamento cósmico que encanta a humanidade desde épocas remotas.

O eclipse lunar acontece quando o Sol, a Terra e a Lua se alinham, fazendo com que a Lua passe pela sombra da Terra. Quando a Lua inteira entra na parte mais escura da sombra da Terra, chamada de umbra, ocorre o eclipse lunar total.

O eclipse de amanhã será parcial, ou seja, apenas parte da superfície lunar estará dentro da umbra. No entanto, por muito pouco não teremos um eclipse total, uma vez que, no ápice do fenômeno, 97% da superfície do nosso satélite natural estará na umbra.

Infelizmente o carioca só poderá observar o início do eclipse, pois a Lua estará quase se pondo, momentos antes do nascer do Sol. Procure um local onde o poente esteja livre de prédios e montanhas (lembre-se, a Lua estará bem baixa!). Às 4h19min (hora de Brasília) de amanhã, a Lua começará a entrar na umbra da Terra e o eclipse parcial terá início. À medida que a Lua se mover para a umbra, parecerá que o disco lunar está sendo “mordido”, e a parte da Lua dentro da umbra aparecerá bem escura. O Sol nascerá às 5h e, antes disso, a claridade do alvorecer irá atrapalhar a observação. O auge do fenômeno acontecerá às 6h, quando a Lua já estará abaixo do horizonte. A imagem abaixo mostra a parte da Lua que estará “mordida” no momento que a Lua desaparecer no horizonte oeste.

A chegada de uma frente fria provavelmente trará chuva para a cidade do Rio de Janeiro neste fim de semana, o que poderá impedir a observação do fenômeno. A boa notícia é que o próximo eclipse lunar será total, e poderá ser visto inteirinho, do começo ao fim, do Rio de Janeiro. Ele ocorrerá na noite do dia 15 para 16 de maio de 2022.

Quem quiser poderá acompanhar uma transmissão ao vivo do eclipse parcial:

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Caçadores de satélites: ISS, Júpiter e Saturno juntos no céu

O alvorecer do dia 20 de março será bem bacana para quem gosta de acompanhar as passagens de satélites. A Estação Espacial Internacional (ISS – International Space Station) terá uma passagem bem favorável para os moradores do Rio de Janeiro, Minas Gerais, São Paulo, Espírito Santo e Goiás. Além disso, os planetas Júpiter e Saturno estarão visíveis nas proximidades.


Quando a passagem da estação se dá em condições favoráveis, qualquer pessoa pode observar usando seus próprios olhos. Isso mesmo, não há necessidade de telescópio. Na verdade, já que o evento é relativamente curto, o telescópio pode até atrapalhar. Basta apenas pegar a carta celeste e se dirigir para um local onde você tenha acesso ao céu e, de preferência, com o horizonte livre e sem luz urbana.

Passagem da ISS entre Vênus e Marte na França, em 15/02/2017. Crédito: David Duarte.

A ISS é visível porque reflete a luz do Sol, da mesma forma que a Lua. Ao contrário da Lua, ela não pode ser observada durante o dia mas, sob certas circunstâncias, momentos antes do amanhecer ou após o pôr do Sol. Para alguns, ela lembra uma estrela, só que em movimento. Para outros, um avião, com a exceção de que a ISS não apresenta luz piscando.

A carta celeste abaixo indica a passagem da ISS por entre as constelações, para o amanhecer do dia 20 de março. Ela foi confeccionada para a Cidade do Rio de Janeiro e arredores. Se você estiver em outra cidade, poderá obter uma carta adequada AQUI (lembre-se de informar a sua cidade antes de gerar a carta). Note que alguns horários estão indicados na carta, uma vez que precisamos saber não somente para onde olhar, mas também, quando!


Carta celeste para a passagem da ISS no amanhecer do dia 20 de março, para a Cidade do Rio de Janeiro e arredores. Norte está em cima e sul embaixo. Leste à esquerda.

Aproveite a oportunidade e acompanhe o início da temporada de visibilidade dos planetas gigantes Júpiter e Saturno. Eles estarão bem visíveis no horizonte leste, momentos antes do Sol nascer, na constelação do Capricórnio. A passagem da ISS é também uma excelente ocasião para aprender a identificar algumas das principais constelações usando a carta celeste.

Viajando a 440km do solo, e incríveis 27.000km/h, a ISS completa uma volta ao redor da Terra em apenas 93 minutos. Isso significa que esses eventos não são raros. Então não fique triste caso não consiga acompanhar dessa vez. No caso de alguém tirar foto do evento e desejar compartilhar conosco, fique à vontade!

Vamos torcer para o céu colaborar. Boa caçada!

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades Notícias

Marte: Esperança, Questões Celestiais e Perseverança

Marte sempre foi o maior alvo da pesquisa espacial e este mês de fevereiro de 2021 recebe três visitas, quase simultâneas, de três missões de exploração.

Esperança Arábe

Acima e a esquerda representação da sonda em modo de cruzeiro, abaixo e a esquerda sonda sendo preparada antes do lançamento, a direita diagrama das etapas da missão

A missão inaugural do programa de exploração planetária dos Emirados Árabes chama-se Hope (em árabe Al Amal que siginifica Esperança) e foi lançada com sucesso em 20 de junho de 2020. O programa, orçado em US$200 milhões, foi produto de uma colaboração com o Japão (que forneceu o foguete lançador) e três universidades americanas. Trata-se de um sonda orbital para estudar a atmosfera marciana através de câmeras de alta resolução no infravermelho e ultravioleta. Espera-se coletar uma enorme quantidade de dados da dinâmica atmosférica marciana. A previsão é de que a sonda entre e órbita no próximo dia 09 de fevereiro de 2021.

ver https://www.emiratesmarsmission.ae/

Questões Celestiais Chinesas

A esquerda representação do rover em funcionamento, ao centro as três partes da missão: orbiter, rover e lander; a direita acima sonda em modo de cruzeiro, a direita abaixo sonda antes do lançamento

A China tem se tornado um potência espacial inquestionável desde que lançou sua missões tripuladas ao redor da Terra e sondas a Lua. A primeira missão chinesa a Marte foi em parceria com a Rússia em 2011 que não obteve sucesso.
Agora chegou a hora de mirar Marte novamente. A sonda chinesa chama-se Tianwen (Questões Celestes) e trata-se de uma missão completa: orbiter, lander e rover. Foi lançada em 23 de julho de 2020 e deve chegar a Marte no dia 10 de fevereiro de 2021. O lugar de pouso programado chama-se Utopia Planitia, famoso na série Star Trek por ser o lugar ficticio onde a Enterprise-D e a Voyager foram construídas: nos estaleiros da Federação dos Planetas. O principal objetivo da sonda é buscar evidências de vida (passada ou atual) e avaliar o meio ambiente marciano, incluíndo sondas de penetração do solo. O primeiro vôo tripulado chinês ao planeta está agendado para as próximas décadas.

ver https://en.wikipedia.org/wiki/Tianwen-1

Perseverança e Engenhosidade Americanas

A esquerda a sonda em modo de cruzeiro, acima drone Ingenuity, abaixo a direita: rover Perseverance.

O Programa de Exploração de Marte da Nasa já enviou quatro rovers ao planeta que se tornaram famosos: Sojourner (1997), Spirit (2004), Oportunity (2004) e o Curiosity (2012). O rover Perseverance (Perseverança) vai a bordo da sonda Mars2020 junto com um companheiro pioneiro: o drone Ingenuity (Engenhosidade). O local de pouso é a Cratera Jezero que há 3.7 bilhões de anos atrás deve ter abrigado um um lago no um delta de rio onde acumulou sedimentos que podem ter preservado bem bioassinaturas (sinais químicos da presença de vida). A sonda custou algo em torno de US$2,1 bilhão e traz uma quantidade enorme de instrumentos. O drone Ingenuity é um helicóptero robótico que pretende escoltar o Perseverance, procurando locais promissores para prospectar. Essa será a primeira experiência de um objeto voador em outro planeta testando estabilidade e manobrabilidade. A previsão de chegada é dia 18 de fevereiro. Outra expectativa desta missão é recolher amostras para, em uma futura missão, retornar a Terra.

ver https://mars.nasa.gov/mars2020/

Teremos em breve muitas informações interessantes sobre o planeta Marte. Fiquem atentos.

Categories
Coluna do Astrônomo Conteúdo científico

Cultivo de cianobactérias usando a luz das estrelas

A busca de vida fora da Terra é um dos ramos da astronomia moderna que mais despertam o interesse dos cientistas e de pessoas em geral. A inquietante pergunta “estamos sós no Universo?” tem percorrido o imaginário por séculos, e ganhou novos contornos em 2016, quando se descobriu que ao redor da estrela mais próxima da Terra, uma pequena anã vermelha distante 4,25 anos-luz, girava um planeta com condições de abrigar água no estado líquido. A excitação da descoberta não apaga o fato de que estrelas anãs vermelhas têm uma luminosidade mais fraca e avermelhada do que a luz que sustenta a vida na Terra. E a dúvida persistente na mente dos astrobiólogos tem sido: estrelas bem menos quentes que o nosso Sol poderiam hospedar vida?

As anãs vermelhas são alvos promissores para a busca de exoplanetas, uma vez que são pequenas e pouco luminosas, de forma que planetas que eventualmente passem na frente da estrela são mais facilmente detectados. Isso porque uma das maneiras de inferir a presença de um planeta se dá por meio de um fenômeno parecido com o eclipse, mas que é chamado de “trânsito”: quando um planeta passa na frente de uma estrela, instrumentos na Terra detectam uma queda na luminosidade estelar.

Ilustração do trânsito do exoplaneta WASP-107b, orbitando uma estrela distante 200 anos-luz. Crédito: ESA/Hubble, NASA, M. Kornmesser

Esse é um dos métodos mais eficientes de descoberta de exoplanetas: o catálogo de exoplanetas da NASA contém mais de 4.300 objetos, dos quais, 3.294 foram descobertos por meio dos trânsitos (https://exoplanets.nasa.gov/).

Como as anãs vermelhas têm pouca massa, os planetas têm órbitas mais próximas e portanto, são mais rápidos, produzindo trânsitos periódicos facilmente monitorados. Como era de se esperar, um grande número de exoplanetas foi encontrado ao redor de anãs vermelhas, vários deles na chamada zona de habitabilidade (região na qual se acredita que a água possa existir no estado líquido; ou seja, o exoplaneta está nem muito longe da estrela central, a ponto da água estar congelada, nem muito perto, para que a luminosidade estelar evapore a água). Porém a dúvida permanece: funções biológicas básicas como a fotossíntese podem ocorrer em condições mais frias, com baixa luminosidade avermelhada?

As primeiras respostas para essa pergunta começaram a surgir, graças ao trabalho de uma equipe do Observatório Astronômico de Padova, na Itália, que culminou com a publicação dos resultados na Revista Life, em 12 de janeiro deste ano. Nos últimos anos foram descobertas cianobactérias extremófilas com clorofila, que conseguem sobreviver em ambientes de pouquíssima luz, onde outras bactérias morreriam. O grupo italiano decidiu então pesquisar a possibilidade dessas cianobactérias sobreviverem sob a luz de uma estrela anã vermelha. Para isso, a equipe simulou um ambiente com luz similar à produzida por estrelas anãs vermelhas e verificou o seu efeito em vários tipos de bactérias.

Essas bactérias incluíam a Chlorogloeopsis Thermalis, uma cianobactéria extremófila, que aparece em fontes termais, e é capaz de fotossintetizar na presença da luz vermelha próxima ao infravermelho. O resultado foi promissor: a bactéria se desenvolveu sob a luz simulada de uma anã vermelha!

Crédito: Ezume Images/Shutterstock

O experimento demonstrou que estrelas anãs vermelhas produzem luz que alguns seres vivos podem capturar para realizar a fotossíntese. Isso implica num ambiente onde a vida pode ser sustentável?

Infelizmente as estrelas anãs vermelhas são propensas a emitir rápidas e violentas explosões com intensa emissão de ultravioleta, o que poderia inviabilizar a presença de substâncias voláteis, como a água. No entanto, se a fotossíntese for possível nesses exoplanetas, eles podem exibir sinais reveladores para nós observadores distantes, como por exemplo, uma atmosfera rica em oxigênio (sabe-se que o oxigênio da Terra está associado à fotossíntese, principalmente das algas marinhas).

Alguns geólogos planetários consideram que uma atmosfera rica em oxigênio poderia também ser criada pela luz solar transformando a água em hidrogênio e oxigênio. Neste caso, um registro mais convincente seria uma queda repentina de luz infravermelha causada pela absorção fotossintética na superfície do planeta. O Telescópio Espacial James Webb (https://www.jwst.nasa.gov/), substituto do Hubble, está programado para ser lançado no fim de 2021 e deve ser capaz de estudar, dentre outras coisas, esse aspecto da natureza dos exoplanetas. Aguardamos ansiosos!


Espelho primário do Telescópio Espacial James Webb. Crédito: NASA.
Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Estrela de Natal: Conjunção entre Júpiter e Saturno

O final do ano reserva um fenômeno astronômico marcante para a noite do dia 21 de dezembro, quando os dois maiores planetas do Sistema Solar estarão muito próximos no céu, durante o fenômeno da conjunção. Trata-se de um “presente de natal” antecipado para os amantes da astronomia. Os planetas Júpiter e Saturno estarão tão próximos que parecerão formar um “planeta duplo”. Trata-se de um evento único na vida da maioria das pessoas. Saiba um pouco mais sobre o fenômeno, e como observá-lo.

Quando acontece uma conjunção, dois ou mais corpos celestes aparecem próximos no céu. Os corpos celestes envolvidos numa conjunção podem ser: Sol, Lua, planetas, estrelas e satélites artificiais.

Conjunção de Vênus (mais brilhante) com o aglomerado aberto das Plêiades em abril de 2012. Crédito: Bob King.
Conjunção entre Vênus e Marte (avermelhado) em 20/02/2015.

Uma conjunção muito importante é a Sol-Marte. Nessas ocasiões, que ocorrem a cada 26 meses, o planeta vermelho fica praticamente atrás do Sol do ponto de vista da Terra. Nessa geometria celeste, além de não podermos observar Marte no céu, as comunicações com as sondas em solo marciano são reduzidas, ou até mesmo, interrompidas. A razão é que por conta do alinhamento, as comunicações de rádio são perturbadas pelo Sol, e mensagens distorcidas devem ser evitadas a todo custo, para preservar os equipamentos.

Ilustração das posições de Marte (órbita mais externa), Sol (posição central) e Terra durante a conjunção Sol-Marte. Durante essas ocasiões, que ocorrem a cada 26 meses, Marte passa praticamente atrás do Sol para um observador na Terra. Crédito: NASA/JPL – Caltech.

A astronomia tem uma definição precisa para conjunção de corpos celestes, que não se resume ao “estar próximo” no céu, mas tem a ver com o sistema de coordenadas celestes adotado. Por exemplo, se o sistema de coordenadas adotado for o Eclíptico, o plano de referência é o plano da órbita da Terra ao redor do Sol. Assim, qualquer objeto celeste pode ser localizado pelas coordenadas latitude eclíptica e longitude eclíptica, e por definição uma conjunção ocorre quando dois ou mais corpos têm a mesma longitude eclíptica. Essa definição técnica é interessante, pois evita uma definição vaga de conjunção, baseada em proximidade: afinal, se a condição necessária for simplesmente a proximidade de dois corpos no céu, qual seria a distância máxima para o evento ainda ser chamado de conjunção?

Então nem sempre uma aglomeração de astros no céu é de fato uma conjunção? Isso mesmo, vai depender da tal coordenada eclíptica. Por acaso, a conjunção Júpiter-Saturno (eclíptica) desde ano ocorrerá por voltas das 15h20min, praticamente na mesma hora da máxima aproximação. Mas deixemos esse detalhe técnico para os técnicos, afinal a beleza do fenômeno não se altera com essa informação. E não se preocupe com o horário, pois como veremos mais a frente, os planetas são muito lentos e não fará muita diferença observar o evento algumas horas depois, ao anoitecer.

As conjunções Júpiter-Saturno são bem impressionantes, pois os planetas se destacam no céu pelos seus brilhos intensos. Uma vez a cada 20 anos, os dois maiores planetas do Sistema Solar parecem se encontrar no céu do ponto de vista do observador na Terra. Durante a próxima conjunção Júpiter-Saturno, que acontecerá no dia 21 de dezembro, os planetas parecerão estar se tocando. Mas não se iluda, a proximidade é um efeito de perspectiva, e será apenas aparente. Na verdade eles estarão afastados entre si mais 700 milhões de quilômetros!

Ilustração (fora de escala) da configuração dos planetas durante a conjunção. Crédito: Lowell Observatory.

Mas qual o motivo do intervalo de 20 anos? Júpiter e Saturno são planetas bem distantes do Sol e, portanto, se movem bem lentamente no céu: enquanto a Terra leva um ano para completar uma volta ao redor do Sol, Júpiter precisa de cerca de 12 anos e Saturno cerca de 30 anos. Tais órbitas longas fazem com que, do ponto de vista da Terra, encontros entre os dois só sejam possíveis a cada 20 anos*. É como se fosse uma corrida de Fórmula 1 e Júpiter, por estar mais próximo do Sol e, portanto mais rápido, desse uma volta em Saturno a cada 20 anos.

Ilustração da conjunção Júpiter-Saturno em 21 de dezembro de 2020. Por causa do alinhamento, do ponto de vista da Terra, os planetas Júpiter e Saturno aparecem próximos no céu.

Na maioria das conjunções a separação entre Júpiter e Saturno é de cerca de 1 grau, o que corresponde a aproximadamente duas Luas Cheias lado a lado. Neste ano eles estarão separados por apenas 6 minutos de arco, ou 1/10 do grau. Isso corresponde a apenas 1/5 do tamanho da Lua.

Na maioria das conjunções Júpiter-Saturno, os dois planetas se encontram afastados cerca de 1 grau, o que corresponde a duas Luas lado a lado. Crédito: Lowell Observatory.
Na conjunção do dia 21 de dezembro de 2020, os planetas estarão separados por apenas 6 minutos de arco, ou 1/10 do grau. Isso corresponde a apenas 1/5 do diâmetro da Lua. Crédito: Lowell Observatory.

Alguns estudiosos especulam que a história bíblica da Estrela de Belém que conduziu os Três Reis Magos do Oriente ao encontro do menino Jesus, está associada a uma conjunção Tripla de Júpiter e Saturno. Isso mesmo, você leu direito. Em intervalos de tempos irregulares, podem ocorrer ao longo de meses, uma sequência de três conjunções Júpiter-Saturno. A última conjunção tripla foi em 1981, enquanto a próxima é esperada para 2238**. No ano 7 a.C., ocorreram conjunções em 29 de maio, 30 de setembro e 5 de dezembro, tempo suficiente para os três viajarem de sua terra natal, no Oriente, até encontrar a criança na manjedoura. Os dois planetas brilhantes convergindo num ponto perto do horizonte, certamente indicaria uma direção a ser seguida. Por essa razão, a conjunção desde ano tem sido frequentemente chamada de “Estrela de Natal”.

Será fácil acompanhar a bela dança do par de planetas até o seu ápice por ocasião da conjunção. Basta olhar para a direção do poente, logo após o pôr do Sol, nas próximas noites. Como os planetas estarão próximos do horizonte, teremos cerca de uma hora para observar antes do desaparecimento no horizonte, e lugares com montanhas ou prédios devem ser evitados. Na noite do dia 16 de dezembro, a Lua Crescente estará próxima aos dois, numa bela configuração.


Ilustração do céu voltado para o horizonte oeste, para a noite do dia 16 de dezembro, por volta das 19h30. Crédito: Stellarium Web Online Star Map.

A conjunção anterior entre Júpiter e Saturno ocorreu no ano 2000, mas foi um desastre para o observador: além de os planetas estarem mais afastados entre si (cerca de 2,5 vezes o diâmetro da Lua), a observação era quase impossível pois o Sol se encontrava nas proximidades.

A última conjunção Júpiter-Saturno com proximidade entre os planetas similar à de 2020, ocorreu em 1623, alguns anos após as primeiras observações telescópicas de Galileu Galilei. No entanto, mais uma vez o Sol estava próximo, impedindo a observação do fenômeno.

A mais espetacular conjunção dos planetas gigantes nos últimos 1.000 anos ocorreu em 1226, quando os planetas estiveram 3 vezes mais próximos entre si do que no evento de 2020. Isso ocorreu quase 400 anos antes do surgimento do telescópio.

Você quer mais motivos para não perder a próxima conjunção envolvendo Júpiter e Saturno? Nas conjunções que ocorrerão em 2040 e 2060, as separações entre os planetas serão bem maiores. Somente em 2080 teremos uma conjunção tão espetacular quanto a deste ano, com uma separação similar entre os planetas. Ou seja, o evento do dia 21 de dezembro de 2020 será único para a maioria de nós.

Feliz Natal!

*O intervalo médio mais exato entre cada conjunção de Júpiter e Saturno é de 19,85 anos, sendo determinado principalmente pelos períodos orbitais de Júpiter (11,86 anos) e de Saturno (29,46 anos).

**Fonte: “Conjunctions of Jupiter and Saturn”, The Journal of Royal Astronomical Society of Canada (2000), p. 174.

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades Dicas Notícias

Eclipse Solar de 14 de dezembro de 2020

O que é um eclipse solar?

A condições de ocorrência do eclipse solar: lua nova no mesmo plano que contem o Sol e a Terra. Nas regiões de penumbra só podemos ver uma parte do Sol ocultada pela Lua.

Na próxima segunda (14/12), a Lua vai cruzar a eclíptica (plano da órbita da Terra ao redor do Sol) e será Lua nova (a Lua vai estar na direção do Sol). Por isso a sombra da Lua vai percorrer uma estreita faixa da superfície da Terra. Isto é um eclipse solar.

Região onde a sombra (mais escuro: onde ocorre o eclipse solar total) e a penumbra (mais claro: onde acontece o eclipse parcial) da Lua vão percorrer a superfície da Terra.
https://www.timeanddate.com/eclipse/map/2020-december-14 .
A totalidade será numa estreita faixa que vai do Chile à Argentina. Quase toda América do Sul vai estar na penumbra. No Brasil somente o Norte e metade da região Nordeste não verão o eclipse parcial. No gráfico vemos a porcentagem de máxima ocultação do disco solar.

Aqui no Brasil: Onde vai ser visto e quando?

Para cada região a duração e a parcela do disco solar ocultado são diferentes. Os estados da Região Norte e boa parte do Nordeste não verão este eclipse. Alagoas e Sergipe vão ter menos de 5% de superfície ocultada (uma pequenina mordida num dos cantos do disco solar). Bahia, Distrito Federal, Goiás e Mato Grosso vão ver algo em torno de 8%. A região Sudeste e Mato Grosso do Sul verão algo entre 24% e 31%. Os estados da região Sul verão mais de 37% do disco solar ocultado. No extremo sul do Rio Grande do Sul a ocultação será maior que 50%.

Na cidade do Rio de Janeiro o evento começa as 12h57min. Teremos 31% do disco solar ocultado no momento do máximo, em torno das 14h14min, quando o Sol atinge uma altura de uns 56 graus. Às 15h23min já estará encerrado para os cariocas. Claro que dependemos do tempo abrir. As previsões meteorológicas não são as melhores.

Momento do início do eclipse (horário local) e ocultação máxima para diversas capitais no Brasil.

Como observar com segurança?

Óculos escuros e chapas de radiografia não são recomendados.

Observar o Sol, mesmo eclipsado, é muito perigoso. A melhor maneira (mais segura e mais prática) é por projeção. Você pode usar um espelho, uma lente ou uma câmara escura, chamada de pin hole. Use estes recursos para projetar a imagem numa tela improvisada (uma folha de papel branco por exemplo).

Projetando dentro de uma caixa você pode ver a evolução do fenômeno em segurança. Quanto maior a caixa maior o tamanho da imagem. Quanto maior o tamanho do orifício mais luz entra, entretanto piora a imagem. Sugestão: comece com um furo de agulha e não passe muito da espessura de um prego.
Diagrama simplificado para projetar a imagem do Sol. Note o detalhe de que a imagem tem que ser formar no centro da sombra. Mova o anteparo olhando para essa sombra, de costas para o Sol,
Você pode usar um lado de um binóculo simples (que não use prismas) ou uma luneta. Um para-sol também é preciso para fazer sombra na folha.


Para observação existem dois tipos de filtros importados seguros: 1) folhas metalizadas do tipo mylar intituladas solar screen; 2) filmes de um polímero sintético chamada de baader. Se não dispõe destes produtos ou tem dúvidas quanto procedência NÃO IMPROVISE. Existe uma opção mais acessível e razoavelmente confiável: o filtro de soldador número 14 (não use números menores). Você obtém facilmente nas lojas de ferragens em retângulos ou círculos.

Filtros de soldador número 14 (ou maior) e películas aluminizadas especiais (Mylar, SolarScreen ou Baader) pode ser usados como filtros eficientes. Não use filtros feitos para rosquear na ocular (podem rachar) . Se não tem um filtro confiável use seu telescópio para projetar a imagem. NUNCA OLHE PARA O SOL COM INSTRUMENTO ÓPTICO sem um filtro aluminizado.
Exemplos da imagem do disco solar parcialmente ocultado com filtros de soldador (abaixo à esquerda) e mylar (abaixo à direita) em outro eclipse solar parcial.
(Eclipse solar parcial 11/09/07 visto no Planetário do Rio.)

Quando e onde vai ter eclipse de novo?

Todo ano tem eclipse solar. Raro é a sombra passa perto de onde você mora.

Referências:

https://www.timeanddate.com/eclipse/map/2020-december-14
https://eclipse.gsfc.nasa.gov/SEgoogle/SEgoogle2001/SE2020Dec14Tgoogle.html
https://www.deviante.com.br/noticias/ciencia/eclipse-solar-de-carnaval-e-como-observa-lo/
https://www.vercalendario.info/pt/lua/brasil-14-dezembro-2020.html
https://www.businessinsider.com/every-total-solar-eclipse-until-2040-video-2017-8
http://oal.ul.pt/observar-o-sol-em-seguranca/
http://portaldoprofessor.mec.gov.br/storage/materiais/0000017087.pdf
https://www.businessinsider.com/every-total-solar-eclipse-until-2040-video-2017-8
http://oal.ul.pt/observar-o-sol-em-seguranca/
http://portaldoprofessor.mec.gov.br/storage/materiais/0000017087.pdf
https://www.vercalendario.info/pt/lua/brasil-14-dezembro-2020.html
https://www.businessinsider.com/every-total-solar-eclipse-until-2040-video-2017-8
http://oal.ul.pt/observar-o-sol-em-seguranca/
http://portaldoprofessor.mec.gov.br/storage/materiais/0000017087.pdf

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

1957 Sputnik

O ano era 1957: a televisão norte-americana lançava a comédia situação (sitcom) “Leave It to Beaver”; o rádio tocava o hit de Elvis Presley “Jailhouse Rock” e Jack Kerouac publica seu livro “On The Road”. Mas outro som desperta a América, um som vindo do espaço.

Fazia 12 anos que a Segunda Guerra Mundial tinha acabado com a detonação de duas bombas atômicas no Japão. Depois disso começou um novo tipo de conflito velado: a Guerra Fria. Antigos aliados, União Soviética e Estados Unidos, agora se debruçavam sobre os despojos tecnológicos da Alemanha nazista derrotada. Fazia oito anos desde que a União Soviética já tinha desenvolvido sua primeira bomba atômica de fissão e menos de dois anos da explosão da sua primeira bomba de hidrogênio (muito mais potente).

As primeiras bombas eram projetadas para serem lançadas de aviões. Para tornar a ameaça nuclear mais assustadora faltava um veículo de transporte mais eficiente. Era preciso colocar a arma de destruição mais poderosa já feita pelo humanidade bem na cara do inimigo. A Alemanha nazista já desenvolvera o veículo ideal: os foguetes V2. Dos descendentes destes foguetes e das bombas iniciais surgiu a arma mais temida da humanidade: o míssil balístico intercontinental. 

O que distingue um míssel destes de um foguete lançador de satélite é, essencialmente, o que cada um leva na sua na sua ponta (na sua extremidade) e sua trajetória. A carga útil que pode ser uma ogiva explosiva (nuclear ou convencional) ou um veículo espacial: um satélite artificial.

No ano de 1957 a ONU lançou o Ano Internacional Geofísico e um dos desafios científicos era o colocar o primeiro satélite artificial. Previsto pela teoria gravitacional de Isaac Newton, e antecipado pelas obras de Júlio Verne, o satélite artificial ainda não havia saído do papel. A tecnologia básica já existia mas faltava pelo menos mais um estágio e a orientação correta para colocar um objeto se movimentando redor da Terra. Ficar em órbita, falando de forma simplificada, é lançar um projétil de tal forma que ao cair não atinge mais a superfície da Terra. Isso se consegue fazendo um disparo horizontal a uma altura acima de 100km (onde o ar não oferece resistência) a uma velocidade igual ou superior a 8km por segundo. 

Isso foi feito primeiro pela União Soviética no dia 4 de outubro de 1957. A esfera metálica de 60cm e um pouco mais de 80kg dava uma volta na Terra a cada 96 minutos emitindo um bip bip insistente e fácil de captar por qualquer radioamador. 

Sputnik significa pequeno companheiro. Foi lançado por um foguete denominado Semiorka R7. Mais tarde este R7 daria origem a toda uma nova dinastia de foguetes. A família decorrente até hoje coloca naves espaciais em órbita, como as Soyuz que levam os astronautas da atualidade para a ISS.  

Mais do que uma conquista científica, o Sputnik abalou a supremacia norte-americana e se tornou um desafio para os políticos. As forças armadas norte-americanas estavam tentando individualmente a colocação do primeiro satélite sem sucesso. Esse momento especial foi um impacto tão grande ficou conhecida como Crise Sputnik, o que levou à criação da Nasa, Agência Espacial norte-americana, responsável por centralizar a pesquisa espacial. 

A dianteira soviética na corrida espacial marcou mais um recorde no mês seguinte quando foi para o espaço o primeiro ser vivo em órbita, a cadelinha Laika, no Sputnik 2. Mas essa é outra história.

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Antares: uma supergigante em detalhes

Paulo Cesar R. Pereira

Durante as noites mais frias do inverno no Brasil, a constelação do Escorpião domina os céus, estando bem alta por volta das 22h no mês de julho. A forma inconfundível, e a presença da estrela brilhante, de cor laranja-avermelhada, faz dessa constelação uma das mais tranquilas de ser identificada pelo observador inexperiente. A estrela se chama Antares, uma enorme supergigante. Observando a luz visível dessa estrela, sabia-se que ela tinha um tamanho 700 vezes maior do que o Sol. De acordo com dados de pesquisas recentes, ela é bem maior do que podemos supor com base no que nossos olhos conseguem ver.

Carta celeste para o início de julho, no começo da noite. Crédito: Stellarium.

Todas as estrelas emitem um vento estelar -fluxo constante de radiação, partículas e campos magnéticos. Embora o vento estelar do nosso Sol não seja tão intenso quanto o de uma supergigante, é capaz de produzir sérios problemas nas redes de comunicação e de energia aqui na Terra, sem contar as belas auroras. As estrelas supergigantes, como Antares, são bem menos quentes do que o nosso Sol, mas apresentam ventos estelares muito mais intensos, lançando ao espaço elementos químicos pesados como N e o C, que são básicos para a vida como a conhecemos.

Um grupo de astrônomos busca entender como é produzido o vento estelar nas estrelas supergigantes, usando dois conjuntos de equipamentos: o Atacama Large Millimeter / submilimeter Array (ALMA) e o Karl G. Jansky Very Large Array (VLA). Eles não são telescópios tradicionais, no sentido de que podemos ver a imagem coletada diretamente com os nossos olhos, mas são radiotelescópios. Ou seja, são antenas de metal que coletam radiação numa frequência que nossos olhos não enxergam, mas que permite acessar camadas mais profundas da atmosfera das estrelas.

Crédito: National Radio Astronomy Observatory (NRAO)

Apontando os equipamentos do ALMA para Antares, foi possível estimar que a sua cromosfera (uma das camadas da atmosfera das estrelas) se estende a uma distância equivalente ao diâmetro da estrela! Para você ter uma ideia, a cromosfera do Sol tem apenas 1/200 do raio solar. Já o VLA, com sensibilidade para frequências menores, conseguiu observar uma camada ainda mais externa, chamada zona de aceleração. É nela que o material escapa da estrela, criando o vento estelar. Essa camada se estende por aproximadamente 3 bilhões de quilômetros, enquanto os ventos podem chegar ao dobro disso.

Ilustração das várias camadas da atmosfera de Antares, comparadas com o tamanho do Sistema Solar. Nessa escala, o Sol (Sun) é bem menor do que um pixel. Crédito: NRAO/AUI/NSF, S.Dagnello.
https://vimeo.com/428242573
Radiotelescópios revelam em detalhes a atmosfera da estrela supergigante Antares. Ilustração da pesquisa realizada. Crédito: NRAO

Essas observações são importantes para tentar entender a origem do vento estelar, bem como da pulsação, um fenômeno muito comum nas supergigantes, e que é responsável pelo enriquecimento químico do espaço. E tem mais, sabe-se que as estrelas supergigantes irão eventualmente explodir como uma supernova. Se você acha fácil encontrar Antares no céu, imagine se ela se transformar numa supernova, quando poderá ficar tão brilhante quanto uma Lua Cheia!

Da próxima vez que procurar pelo Escorpião no céu, lembre-se que aquele ponto brilhante e avermelhado é bem maior que o nosso Sol, cabendo dentro dele, com folga, a orbita de Saturno, e provavelmente explodirá num futuro distante, tornando-se muito mais brilhante, para depois desaparecer, e quem sabe, virar um buraco negro.