Usamos cookies em nosso site para lhe dar a experiência mais relevante, lembrando suas preferências e repetindo visitas. Ao clicar em "Aceitar tudo", você concorda com o uso de TODOS os cookies. No entanto, você pode visitar "Configurações de cookies" para fornecer um consentimento controlado.

Visão geral da privacidade

Este site usa cookies para melhorar sua experiência enquanto você navega pelo site. Destes, os cookies categorizados conforme necessário são armazenados no seu navegador, pois são essenciais para o funcionamento das funcionalidades básicas do site. T...

Sempre ativado

Os cookies necessários são absolutamente essenciais para que o site funcione corretamente. Esta categoria inclui apenas cookies que garantem funcionalidades básicas e recursos de segurança do site. Esses cookies não armazenam nenhuma informação pessoal.

Quaisquer cookies que podem não ser particularmente necessários para o funcionamento do site e são usados especificamente para coletar dados pessoais do usuário através de análises, anúncios, outros conteúdos incorporados são denominados como cookies não necessários. É obrigatório obter o consentimento do usuário antes de executar esses cookies em seu site.

Categories
Coluna do Astrônomo

Os Primórdios da Relatividade: Einstein

Por Alexandre Cherman (alexandre.cherman@planetario.rio.rj.gov.br)

Invariância é uma propriedade que algumas leis físicas possuem sob certas transformações de sistemas de coordenadas. Ela é muito importante visto que pode ser considerada uma medida da abrangência da validade das equações que regem os processos físicos. As transformações de Galileu mantinham invariantes as equações de movimento propostas por Newton, e isto apenas reforçava a importância da visão do mundo sugerida pelo físico inglês.

Com o surgimento de um novo ramo da física, o eletromagnetismo, percebeu-se que as equações de Maxwell não eram invariantes sob transformações de Galileu. Esta constatação levava à óbvia (e perigosa) bifurcação: ou mexia-se nas transformações de Galileu ou mexia-se nas equações de Maxwell.

Confiante na validade da cinemática proposta pelas equações do eletromagnetismo de Maxwell, Einstein se propôs a encontrar um conjunto de transformações de coordenadas que mantivessem intactas as formas destas equações. Mais precisamente, fez isso através de dois postulados básicos:

1. As leis da física assumem a mesma forma em todos os referenciais inerciais;

2. Em qualquer referencial inercial a velocidade da luz, é sempre a mesma, seja emitida por um corpo em repouso ou por um corpo em movimento uniforme.

Vemos que o primeiro postulado nada mais é do que o argumento de invariância já descrito aqui (repare sempre que Einstein, neste momento, exclui forças e acelerações).

O segundo postulado é o mais importante, por assim dizer. Ele representa uma quebra do bom senso. Imaginemos um lançador de bolas de tênis que lance as referidas bolas a uma velocidade de 10m/s. Vamos colocá-lo, agora, em cima de um caminhão que esteja andando a 5m/s. É óbvio que para um desafortunado tenista que esteja frente a frente com o veículo, as bolas estarão chegando com uma velocidade de 15m/s. O que o segundo postulado de Einstein nos diz é que se o lançador estiver arremessando “bolas de luz” (a 300.000km/s), tanto faz ele estar parado ou em cima de um caminhão em movimento (com uma velocidade de 5m/s ou 200.000km/s): a velocidade das “bolas de luz” será sempre de 300.000km/s. É este desafio ao bom senso que a Relatividade nos apresenta.

Para entendermos como isso é possível, fisicamente, basta abandonarmos a lei de adição comum que usamos para as velocidades (em nosso caso acima, 5+10=15). A nova lei de adição de velocidades, proposta por Einstein, é:

Como em nosso caso, e na grande maioria dos fenômenos cotidianos, a razão

é muito pequena, podemos tomá-la como zero, recaindo na fórmula usual de adição.

Por que Einstein propôs a velocidade da luz como um limite físico para o movimento (sim, pois vemos pela nova regra de adição que nada poderá viajar mais rapidamente do que a luz)? Se a confiança de Einstein na nova dinâmica proposta por Maxwell era limitada, podemos dizer que era total quanto à cinemática. Assim, as equações da onda eletromagnética deveriam ser válidas independentemente da velocidade do observador em relação à luz.

O que veria alguém que viajasse na velocidade da luz? A princípio, não veria nada. Sim, pois as ondas eletromagnéticas não o alcançariam. Mais precisamente, neste referencial comum, a velocidade de propagação da onda é zero, descaracterizando-a como tal. A onda luminosa deixa de existir! Einstein se recusou a concordar com isso. Surgia, então, seu segundo postulado.
A partir de seus dois postulados, Einstein obteve um conjunto de transformações entre dois referenciais inerciais que mantivessem as equações de Maxwell inalteradas. Não por acaso, as transformações obtidas eram as próprias transformações de Lorentz para um deslocamento relativo na direção

Devemos atentar para o fato de que, na época desta sua conclusão, o físico alemão não tinha conhecimento nem da experiência de Michelson e Morley, nem da solução proposta por Lorentz.

Começava aqui o longo caminho de sucesso de um novo ramo da física.

Categories
Coluna do Astrônomo

Os Primórdios da Relatividade: As Transformações de Lorentz

Toda onda necessita de um meio material para se propagar. O som que ouvimos normalmente nada mais é do que variações de pressão em pequenas faixas de ar. Como se costuma dizer na literatura de ficção científica, “no vácuo, ninguém pode ouvir você gritar”; não há um meio para as ondas sonoras viajarem. A onda de luz, e posteriormente a onda eletromagnética, utilizava-se do éter luminífero (aether luminipherus = “ar portador de luz”) para viajar pelo espaço. Este era uma substância estranha e misteriosa que preenchia o espaço vazio, remetendo às idéias clássicas da “quinta essência” de Aristóteles e dos neoplatônicos.

Uma vez que se sabia bem o que era luz, pensou-se em usá-la para estudar o éter. Mais precisamente o movimento da Terra através dele. Em 1881, o físico americano Albert Michelson concebeu um instrumento por ele batizado de interferômetro. Esse aparelho servia para dividir um raio de luz em dois feixes distintos, remetendo cada um deles em uma direção e reunindo-os novamente a seguir. Se os dois feixes percorressem precisamente a mesma distância, com a mesma velocidade, eles se juntariam depois ainda na mesma fase (a luz permanecendo inalterada). Mas se a distância percorrida ou a velocidade mudassem, mesmo que ligeiramente, os feixes reunidos estariam fora de fase e o aparelho registraria uma interferência semelhante à obtida por Young oitenta anos antes.

Michelson projetou os dois feixes de luz em percursos perpendiculares – um dos quais seguia na direção do movimento da Terra através do éter. Como a composição das velocidades (da luz em relação à Terra e da Terra em relação ao éter) seria diferente para os diferentes feixes, o aparelho deveria acusar uma interferência na chegada das ondas. Isso não foi encontrado.

Michelson atribuiu o fracasso de seu experimento ao método utilizado para as medições. Por vários anos ele refinou sua aparelhagem tentando medir as franjas de interferência, por menor que fossem. Já em 1887, auxiliado pelo químico americano Edward Morley (1838-1923), ele executou sua derradeira experiência e mais uma vez não obteve os resultados esperados. Várias explicações pouco prováveis (entre elas a de que a Terra “arrastava” uma porção do éter em seu movimento e por isso a velocidade relativa entre ambos era zero) foram sugeridas, mas nenhuma foi de fato levada a sério. Talvez a experiência de Michelson e Morley tenha sido o fracasso mais importante da história da ciência moderna.

Em 1892, o físico irlandês George Fitzgerald (1851-1901) propôs uma solução para o problema que rompia as barreiras do bom senso. Disse ele que o espaço (i.e., a distância percorrida) se contraía na direção do movimento. Essa mudança na distância seria tal que manteria em fase os feixes de luz viajando em direções distintas. A contração de Fitzgerald, como é conhecida, lembrava o ideal platônico de “salvar os fenômenos”, visto que era uma hipótese complicadora proposta ad hoc.

Seguindo os passos de Fitzgerald, o físico holandês Hendrik Lorentz (1853-1928), em 1895, corroborou a contração de Fitzgerald, incorporando-a às suas idéias sobre sistemas em movimento, e foi mais além. Lorentz postulou que a massa de uma partícula qualquer aumentava à medida que esta atingia velocidades cada vez maiores. Começava aqui a surgir a noção da velocidade da luz como limite máximo no Universo. Este aumento de massa foi medido em laboratório cinco anos depois. Lorentz também ressaltou o fato de que uma contração na distância acarretaria uma dilatação do tempo (o tempo passa mais devagar para quem está se movendo).

Lorentz propôs um conjunto de equações que descreviam estes “fenômenos”. Por deformarem espaço e tempo, estas equações mantinham constante a velocidade da luz, pois velocidade é espaço percorrido dividido pelo tempo. A figura de interferência era impossível, pois a luz sempre viaja com a mesma velocidade, independente da velocidade com que esteja viajando sua fonte!

Um certo físico alemão chegou a estas mesmas conclusões, apesar de ter trilhado um caminho diferente.

Categories
Coluna do Astrônomo

Os Primórdios da Relatividade: O Eletromagnetismo

O caminho histórico que nos leva à Teoria da Relatividade, proposta pelo físico alemão Albert Einstein (1879-1955) em 1905 e posteriormente generalizada por ele mesmo em 1915, começa (se é que é possível fixar um início exato para uma revolução ou descoberta) com a unificação da eletricidade e do magnetismo, cujo primeiro vislumbre se deu através dos experimentos do físico dinamarquês Hans Christian Orsted (1777-1851).

Antes dele, muitos já cogitavam a hipótese de que eletricidade e magnetismo possuíam algum tipo de relação. Afinal, ambos apresentam-se em dois aspectos opostos (no caso da eletricidade, temos as cargas positivas e negativas; no caso do magnetismo, temos os pólos norte e sul). Nos dois casos os opostos se atraem e os semelhantes se repelem. Ainda em ambos os casos, as forças de repulsão e atração diminuem com o quadrado da distância (dobre-se a distância entre duas cargas ou pólos e a força que sentiam será quatro vezes menor do que antes).

Em 1820, Orsted (em sala de aula) aproximou o ponteiro de uma bússola de um fio por onde passava uma corrente elétrica. Para surpresa geral, o ponteiro mudava sua posição, deixando de indicar o pólo norte. Caso a corrente fosse invertida, invertia-se também a posição do ponteiro. Ficava claro que a presença de uma corrente elétrica no fio perturbava as propriedades magnéticas das proximidades.

Esta idéia ganhou força com os experimentos de outros eminentes físicos da época. Ainda em 1820, o francês André-Marie Ampère (1775-1836) mostrou que dois fios paralelos que apresentassem correntes na mesma direção se atraíam. Se as correntes fossem em direção oposta, os fios se repeliam. Outro francês, François Aragos (1786-1853), demonstrou que se uma corrente passasse por um fio de cobre, este poderia atrair e manter filamentos de ferro, exatamente como um ímã. Por fim, o alemão Johann Schweigger (1779-1857) observou que a quantidade de deflexão da agulha variava em proporção à força da corrente no fio, em referência à experiência original de Orsted (inventando assim o galvanômetro – aparelho que mede a intensidade da corrente em um fio).

Estas descobertas provocaram uma avalanche de experimentos científicos. No ano seguinte, o físico inglês Michael Faraday (1791-1867) organizou um circuito elétrico que incluía dois fios e dois magnetos. Em um dos casos, o fio era fixo e o ímã era móvel. No outro, era o ímã que ficava fixo e o fio móvel. Quando a corrente passava através do fio, o fio móvel movia-se em torno do magneto fixo e o magneto móvel movia-se em torno do fio fixo. Dessa maneira, Faraday demonstrou pela primeira vez que as forças elétricas podiam produzir movimento.

Independente desta conclusão (que daria origem ao dínamo e aos motores elétricos), Faraday propôs a existência de linhas de força ao redor do fio: um campo magnético gerado pela corrente. Começou com esta experiência a concepção que hoje é um dos pontos centrais da física: a de que o Universo é permeado por campos, que são os condutores das forças.

Paralelamente a estas descobertas físicas, o matemático alemão Carl Gauss (1777-1855) desenvolveu seu teorema da divergência (também conhecido por teorema de Gauss), que relaciona o fluxo através de uma superfície fechada com a quantidade contida no volume definido por esta superfície. Uma vez que se percebeu que a eletricidade e o magnetismo podiam ser representados por campos, o teorema de Gauss simplificava bastante a compreensão de certos resultados.

Dispondo do cálculo integral e diferencial, o matemático britânico James Clerk Maxwell (1831-1879) conseguiu, em 1855, traduzir o conceito de Faraday para a forma matemática e demonstrar que a visão intuitiva do físico inglês sobre as linhas de força estava correta. Maxwell teve a habilidade necessária para compilar os trabalhos da época e interligá-los em um conjunto de quatro equações que são conhecidas como as equações de Maxwell.

Estas equações nos mostram que uma variação do campo elétrico gera um campo magnético e vice-versa. Assim, ao se propagar no vácuo (ou em qualquer outro meio), uma onda elétrica gera uma onda magnética. Temos, na verdade, um conjunto indissolúvel conhecido como onda eletromagnética. Estavam unificados os campos elétrico e magnético, dando origem ao ramo da física conhecido por eletromagnetismo.

Não por acaso, a velocidade calculada para a onda eletromagnética coincidia com o valor conhecido na época (bastante correto) para a velocidade da luz. Sabia-se também, através dos resultados experimentais obtidos em 1801 pelo físico inglês Thomas Young (1773-1829) envolvendo os fenômenos de difração e interferência, que a luz era uma onda. Ela, que já havia sido “o mais imaterial dos corpos” segundo os neoplatônicos, e também um fluxo contínuo de corpúsculos como primeiramente pensado por Isaac Newton (1642-1727), mostrava-se agora como uma onda eletromagnética. Este novo status permitia uma manipulação numérica mais precisa e conseqüente melhora nos resultados experimentais e nas previsões teóricas.

Mas, se a luz é uma onda – e uma onda nada mais é do que uma perturbação em um certo meio – o que a onda luz ondula, afinal?

Categories
Coluna do Astrônomo

Características Externas dos Meteoritos

A grande maioria dos meteoritos encontrados são pretos e mais pesados que as pedras terrestres. Isso ocorre porque apresentam grande quantidade de ferro e níquel em sua composição.

Existem três tipos básicos de meteoritos: os sideritos, compostos basicamente de ferro e níquel, algo em torno de 98%, os aerolitos, compostos de rochas, e os siderolitos, compostos de rocha, ferro e níquel.

As pessoas que encontram um meteorito, em geral procuram pedras negras e pesadas, que destoam das rochas do local. Mostraremos, abaixo, algumas características que podem ser observadas sem auxílio de instrumento, não oferecendo detalhes.

Os meteoritos apresentam as formas mais variadas, dependendo basicamente de sua estrutura original e de sua entrada na atmosfera. Freqüentemente são encontradas formas piramidais e cônicas, porém os pequenos meteoritos são predominantemente irregulares.

Alguns meteoritos, devido a sua posição ter se mantido constante durante a passagem pela atmosfera, nos mostram dois lados bem distintos. São os meteoritos orientados, muito raros, que estatisticamente compõem apenas 5% do total de meteoritos rochosos e 30% dos meteoritos ferrosos encontrados.

Todos os meteoritos que foram recuperados pouco tempo depois de sua queda, apresentam em sua superfície uma crosta de fusão, uma fina camada preta, que contrasta com a cor encontrada em seu interior. Essa camada é normalmente muito fina, em geral com menos de 1 mm de espessura, podendo algumas vezes chegar a poucos milímetros, sendo mais fina na parte da frente que na parte detrás do meteorito.

A crosta pode ser perdida rapidamente na superfície da Terra devido a vários fatores atmosféricos, como, por exemplo, ações das chuvas e dos ventos. No caso dos meteoritos ferrosos, principalmente, a perda da crosta deve-se à oxidação do ferro.

Além da crosta, na superfície de alguns meteoritos são observadas algumas depressões suaves, que, para um observador, parece ter sido esculpida com os dedos, como se faz com massa de modelar: são os regmalitos. Essas depressões são provocadas pela presença, próximo à superfície do meteorito, de nódulos de minerais com ponto de fusão muito baixo, ou seja, que derretem em uma temperatura muito menor que a dos demais componentes do meteorito. Durante a entrada na atmosfera, o processo de ablação faz com que os nódulos derretam e, assim, sejam esculpidas as depressões.

Falemos de tamanhos de meteoritos. É necessário que fique bem claro que, provavelmente, não se consegue recuperar todos os pedaços de um meteorito, no caso de uma fragmentação. Além disso, o meteorito original passou pela atmosfera, o que afeta sua forma.

Temos meteoritos de vários tamanhos, desde os micrometeoritos, de dimensões que não chegam a um décimo de milímetro e caem na superfície terrestre numa taxa média de 10.000 toneladas anuais, passando por pequenos fragmentos de décimos de milímetro até alguns centímetros, até grandes meteoritos, com alguns metros. Estes últimos podem ser observados em museu, como, por exemplo, o Bedengó, maior meteorito brasileiro que se encontra em exposição permanente no Museu Nacional do Rio de Janeiro.

Apenas essas características não são suficientes para caracterizar um meteorito. Vários testes são feitos e só depois de um resultado conclusivo é que se cataloga o objeto encontrado. Porém, graças a essas características é que pessoas na tentativa de encontrar pedras interessantes ajudam os cientistas a obter novos tipos de meteoritos e, assim, novas pesquisas podem ser realizadas com o intuito de conhecer mais sobre a composição da nuvem primordial que originou o Sistema Solar.

Este é o sexto texto de uma série sobre meteoritos.

Categories
Coluna do Astrônomo

Cometa McNaught (C/2006 P1)

O cometa descoberto em agosto de 2006 pelo astrônomo australiano Robert H. McNaught fez um grande espetáculo no hemisfério norte, e agora começa a se mostrar para nós aqui do hemisfério sul.  Prever o brilho de um cometa ainda é temerário, e este surpreendeu com seu aumento de brilho logo que se aproximou do Sol, quando foi possível vê-lo em plena luz do dia.

A melhor maneira de ver o McNaught nos próximos dias (até 18/01 aproximadamente) será próximo ao poente (19h47min, horário de verão), logo assim que o Sol se põe, como um ponto luminoso seguido de uma cauda em “V”, com comprimento equivalente a duas Luas cheias. À medida que os dias passam, ele se afasta do Sol e seu brilho diminui, pondo-se lentamente mais tarde a cada dia.  Este astro se mostrará à noite em pouco mais de uma semana, porém estará cada vez menos brilhante deixando de ser visível a olho nu antes de terminar a primeira semana de fevereiro (se seu brilho continuar a se comportar como o previsto).

O observador deve ficar atento, pois o comportamento deste cometa faz com que de uma noite para outra possa haver uma variação de brilho considerável.  Provavelmente, as melhores noites de observação serão poucas; toda oportunidade será preciosa.  No final da próxima semana, será necessário um binóculo ou pequeno telescópio, além de uma carta celeste, para distinguir o McNaught entre as estrelas.

Categories
Coluna do Astrônomo

Eclipses

Por Fernando Vieira (fernando.vieira@planetario.rio.rj.gov.br) e Luis G. Haun (luis.haun@planetario.rio.rj.gov.br)

Por que Ocorrem Os Eclipses?

Os eclipses ocorrem quando o Sol, a Lua e a Terra estão alinhados. Este alinhamento só acontece em condições especiais, porque a órbita da Lua ao redor da Terra está inclinada aproximadamente cinco graus em relação à órbita da Terra em torno do Sol.

Os eclipses, então, só se dão nos momentos em que a Lua, nas fases cheia e nova, cruza a órbita da Terra. No primeiro caso, temos o eclipse lunar e no segundo, o eclipse solar.

Os desenhos não estão em escala

Eclipses da Lua – Ocorrem quando a Terra bloqueia a luz solar, impedindo que esta atinja nosso satélite. Mesmo na totalidade, ainda podemos ver a Lua que, nesse momento, adquire um tom avermelhado ou alaranjado. Isso se deve aos raios solares, que atingem a atmosfera da Terra e espalham-se, iluminando nosso satélite. Nessa situação, só a luz vermelha consegue atravessar a espessa atmosfera e atingir a Lua.

Eclipses do Sol – Ocorrem quando a Lua passa entre a Terra e o Sol. A Lua e o Sol apresentam quase o mesmo diâmetro angular. Mas como as distâncias entre estes astros e a Terra variam, os seus tamanhos angulares também variam, de modo que ora o Sol é angularmente maior, ora a Lua. Então um eclipse que ocorra no segundo caso, a Lua encobrirá totalmente o disco solar; é o eclipse total. Já no primeiro caso restará, na fase máxima, um pequeno anel; é o eclipse anular.

Nos eclipses totais, o observador tem oportunidade de ver as estrelas mais brilhantes, além de planetas. Contudo, o mais espetacular é a observação da coroa solar, um halo luminoso, em geral não uniforme, que aparece em torno do Sol e alcança temperaturas superiores a um milhão de graus.

Tanto os eclipses solares como os lunares podem ser parciais quando, mesmo na fase de maior encobrimento, resta ainda uma parte não eclipsada.

Os eclipses totais do Sol só são observados em uma pequena faixa. Fora dessa região os eclipses aparecerão, no seu auge, ainda parcialmente. Dependendo da posição do observador, ele pode mesmo não presenciar o eclipse, embora com o Sol acima do horizonte. Já com o eclipse lunar isso não acontece. Como ele ocorre por causa da sombra da Terra, independe da posição do observador; basta que a Lua esteja acima do horizonte para ele ser visível.

A totalidade dos eclipses solares é de no máximo sete minutos; já nos eclipses lunares a totalidade pode durar 1 hora e 40 minutos.

Durante a parcialidade, a observação do Sol só pode ser feita com o uso de filtros apropriados. Sem essa proteção corre-se o risco de ocorrerem danos irreparáveis aos olhos.

O número de eclipses durante um ano pode variar de quatro a sete, incluindo os solares e lunares.

As fotos abaixo foram tiradas pela equipe da Fundação Planetário:

Eclipse Anular – 10/08/1980 – Nioaque/MS
Autores: Fernando Vieira e Rundsthen V. de Nader

   

Esta última lei é um caso particular da lei da gravitação universal de Newton.

Principais Características dos Astros do Sistema Solar


Eclipse Total – 11/07/1991 – Formoso do Araguaia/TO
Autores: Fernando Vieira e Francisco Bolivar Carneiro

   

 

Eclipse Total – 30/06/1992 – Atlântico (lat: 26º 38’S; long: 30º)
Autor: Fernando Vieira

Eclipse Anular – 29/04/1995 – Belém/PA
Autores: Domingos Bulgarelli e Gladys L. Vieira

Eclipse Total – 26/02/1998 – Maracaibo/Venezuela
Autores: Fernando Vieira e Jorge M. dos Santos Junior

l

Aspecto do Sol às 13h40min. As múltiplas imagens do Sol foram produzidas por vários orifícios em um anteparo (princípio da câmara escura) – Maracaibo/Venezuela
Autores: Fernando Vieira e Jorge M. dos Santos Junior

Como observar o Sol com segurança


ATENÇÃO: Para a observação do Sol são necessários alguns cuidados. A falta do uso de filtros causa danos irreversíveis aos olhos, podendo chegar à cegueira. Siga, portanto, as orientações abaixo:

A observação direta deve ser feita usando-se proteção para os olhos, como o filtro de soldador número 14.

Somente use binóculos ou telescópios se tiverem filtros apropriados.

Pode-se, também, observá-lo indiretamente como apresentado abaixo.

O nosso astro-rei é muito brilhante e vamos tirar proveito disto para efetuarmos a experiência. Usaremos, para isso, o princípio da “câmara escura”.

Use um pequeno espelho coberto por um papel preto em que foi previamente feito um furo de aproximadamente 4mm (se necessário cole o papel no espelho). Agora, projete a imagem refletida do Sol a uns 5 ou 7 metros de distância em um papel branco fixo em uma parede. Será conveniente apoiar o espelho em algum lugar para se obter uma imagem “imóvel”.

Somente na fase total de um eclipse solar (que neste não será visível do Brasil) é que se pode olhar diretamente para o Sol eclipsado.

Os eclipses lunares podem ser vistos diretamente, sem prejuízo para a visão. Com o auxílio de binóculos, lunetas ou pequenos telescópios, são captadas melhores imagens destes eclipses.

Leitura complementar: Histórias de Eclipses

Os eclipses foram os fenômenos celestes que mais preocupação e angústia trouxeram para as civilizações passadas e, até mesmo hoje, geram grande temor em alguns segmentos menos esclarecidos de nossa sociedade.

O homem da Antiguidade considerava o céu imutável. Quando ocorriam fenômenos como os eclipses ou mesmo a passagem de algum cometa, naturalmente ele julgava que os deuses estavam zangados ou que anunciavam tragédias, como guerra, fome ou a morte de algum rei.

Muitas vezes o eclipse era atribuído à ação de dragões, lobos, porcos ou serpentes que devoravam o Sol ou a Lua. Magos ou bruxos eram, então, convocados para expulsar os “monstros” ou os “maus espíritos”.

Chineses e indianos, temerosos, batiam panelas e faziam muito barulho para afugentar o monstro que, acreditavam, engolia o astro. Os romanos erguiam tochas para o céu, na tentativa de substituir a sua fonte de luz.

A previsão dos eclipses era, portanto, muito importante para os antigos. Diz-se que os chineses, há centenas de anos antes de Cristo, conseguiam calcular os eclipses. Segundo uma lenda, os astrônomos Ho e Hi colocaram em risco o Império por não terem previsto um eclipse. Por esta razão, foram imediatamente executados.

Muitas são as histórias acerca dos eclipses e suas conseqüências. Uma delas conta que, em 584 antes de Cristo, os hídios e os medos, povos que habitavam a Ásia Menor, estavam em guerra quando se deu um eclipse solar. Aqueles povos, supondo que o fenômeno se tratava de um sinal divino, logo buscaram negociar a paz.

Outra registra um episódio ocorrido durante as viagens de Colombo. Em 1504, ele e sua tripulação estavam quase morrendo de fome na Jamaica, porque os indígenas se recusavam a fornecer-lhes comida. Colombo tinha a informação de que ocorreria um eclipse da Lua naquela noite. Ameaçou, então, apagá-la, caso não lhes dessem alimentos. Quando o eclipse se iniciou, os indígenas prontamente atenderam ao pedido.

Os eclipses são, também, bastante úteis aos historiadores, pois, sendo eles registrados com freqüência pelos cronistas, podem servir para fixar a data de importantes fatos. Um bom exemplo para ilustrar esta idéia é a história da descoberta do ano da morte do rei da França, Luís – o Bom, o que, até há algum tempo, ninguém tinha conhecimento. Mas, em relato da época, foi mencionada a ocorrência de um eclipse total do Sol, visto na região algumas semanas antes da morte do monarca. Os astrônomos, então, concluíram que o falecimento ocorrera no ano 840 de nossa era.

Atividade: Construção de Um Simulador de Eclipses

O aparelho descrito a seguir possibilita demonstrar a ocorrência de eclipses solares totais, anulares e parciais. Seu funcionamento é muito simples. No desenho, vê-se o esquema de uma caixa de madeira onde há um furo de uns cinco centímetros que simulará o Sol. Pode-se encobrir o furo com um celofane amarelo; a fonte pode ser uma lâmpada de 25 watts com bulbo fosco. Uma bola de isopor de uns dois ou três centímetros representará a Lua, presa por um prego a um caibro. Aproximando-se ou afastando-se esta ripa do “disco solar”, serão produzidos eclipses anulares ou totais, respectivamente. Observando-se através dos furos (0,5 cm), teremos as diversas fases.

Categories
Coluna do Astrônomo

O “Décimo” Planeta e a Importância das Aspas

Recentemente, foi noticiada a descoberta de um corpo maior que Plutão e que seria o “décimo” planeta do Sistema Solar. Esse corpo recebeu, temporariamente, o nome 2003 UB313. É interessante analisarmos com cuidado essa notícia e repararmos em um detalhe sutil no que diz respeito à sua divulgação.

Antes de mais nada: não existe um décimo planeta! Temos ainda no Sistema Solar nove planetas, e devemos nos dar por satisfeitos, porque se Plutão fosse descoberto hoje também não seria considerado um planeta. Quem decide o que é planeta ou não é uma entidade chamada União Astronômica Internacional1.

Em 1951, o astrônomo Gerard Kuiper sugeriu que pequenos corpos deveriam ser encontrados em órbitas maiores que a órbita de Netuno, em uma região que mais tarde seria batizada de Cinturão de Kuiper. Sua teoria baseava-se na idéia de que o disco de matéria que formou os planetas do Sistema Solar não deveria ter um limite muito bem definido, mas sua densidade provavelmente ia diminuindo gradativamente do centro para as regiões externas.

O Cinturão de Kuiper foi teoria até o ano de 1992, quando se teve a primeira evidência observacional. Plutão foi descoberto em 1930, quando não havia ainda a idéia de Kuiper; por isso o consideramos planeta. Se Plutão fosse descoberto hoje, não seria classificado como planeta, mas como um objeto do cinturão de Kuiper, assim como Sedna, Quaoar, o recém-descoberto 2003 UB313, e muitos outros.

Os corpos do Cinturão de Kuiper formam um grupo muito característico de objetos que merece uma classificação à parte. Rochosos, pequenos e gelados, esses corpos formaram-se em condições diferentes das condições em que se formaram os planetas do Sistema Solar.

O site da Agência Espacial Norte-Americana (NASA) divulgou a notícia sob o título: Descoberto “10o Planeta”. A revista ‘Sky&Telescope’ utilizou: Astrônomos Descobrem “10o Planeta”. Aqui no Brasil, a notícia circulou sob títulos semelhantes, mas em alguns veículos de comunicação, com grande circulação nacional, não houve o cuidado de se colocar a expressão “10º Planeta” entre as imprescindíveis aspas. Não foi um descuido apenas nosso, muitos sites americanos e europeus também cometeram essa sutil e grave falha.

Com o tempo, melhoram as tecnologias para aquisição de imagens astronômicas e podemos enxergar objetos cada vez menores e cada vez mais distantes. Sem dúvida ainda teremos muitas outras descobertas de objetos do Cinturão de Kuiper, que poderemos chamar, com o devido cuidado, de “planetas”. Sempre entre aspas.

1- Esse texto foi escrito na época da descoberta de 2003 UB313, em 2005 (quando foi confirmada a existência desse objeto em fotografias obtidas em 2003). O texto já deixa claro que existem diferenças marcantes entre planetas e objetos do cinturão de Kuiper, e adverte o leitor de que Plutão não seria considerado planeta se sua descoberta tivesse sido recente. Um ano depois, em 24 de agosto de 2006, a União Astronômica Internacional criou a nova categoria planetas-anões, na qual foram classificados Plutão, 2003 UB 313 e outros corpos. Leia sobre essa nova classificação no Sistema Solar no artigo “Plutão e Sua Nova Família”. Poucos dias depois, 2003 UB313 foi batizado oficialmente de Éris.

Categories
Coluna do Astrônomo

O Sol: Um Reator Nuclear

Por Sergio Freitas

Uma grande parte das fontes naturais de energia com que contamos deriva da energia que recebemos do Sol. É este o responsável pelas energias eólica e hidráulica, para citar alguns exemplos.

Mas, afinal, o que é que o nosso planeta recebe do Sol? Recebe, basicamente, radiação eletromagnética, além de um influxo de partículas (principalmente prótons) que pouco tem a ver com o tema em questão.

A superfície da Terra, contudo, não recebe toda a radiação que o Sol nos envia, pois a nossa atmosfera absorve boa parte dela. A camada atmosférica bloqueia raios-X, parte dos raios ultravioleta, e partes diversas da radiação infravermelha. Não fosse esta absorção, particularmente a dos raios-X e ultravioletas, o Sol, fonte da vida, seria a fonte da morte…

A radiação que o Sol emite sai da sua “superfície”; sai de uma fina camada periférica com poucas dezenas de quilômetros de espessura. Sai, mas não nasce ali; ela resulta de processos altamente complexos que se desenvolvem no seu interior.

O Sol é uma imensa massa esférica gasosa, com cerca de dois octilhões de toneladas, e com um diâmetro de 1.391.000 quilômetros. Uma vez que, devido à gravitação, todas as partícluas constituintes de uma massa são atraidas para o centro desta, é óbvio que a densidade do Sol cresce com a proximidade ao centro.

Com efeito, nas regiões centrais, a densidade chega a cerca de 160 ou 180 gramas por centímetro cúbico (a densidade do chumbo é cerca de 11, nas mesmas unidades). Apesar deste alto valor, a matéria continua a ser gasosa; se,por milagre, desaparecescem as camadas exteriores (e o seu respectivo peso), a expansão da matéria central seria intantânea. ocorreria uma explosào inimaginável.

Ora, como é sabido, à medida que um gás vai sendo comprimido, a sua temperatura sobe. Assim, a temperatura nas regiões centrais do Sol deve ser altíssima. De fato é: atinge cerca de 14 milhões de graus. A temperaturas desta ordem, os átomos são completamente ionizados e perdem os seus elétrons, pois a imensíssima maioria dos átomos presentes é de hidrogênio (que, normalmente, só tem um próton).

Por outro lado, à medida que um gás é aquecido, suas partículas agitam-se cada vez mais. Daí que o gás exerce uma pressão para fora, cada vez maior. Estamos, pois, diante de uma tendência ao equilíbrio: a gravitação atraindo para o centro, e a pressão, agindo ao contrário, isto é, “empurrando” o gás para fora.

A movimentação das partículas é cada vez mais rápida, à medida que a temperatura aumenta. Porém, a densidade é enorme, como vimos. Deste modo, embora a velocidade das partículas seja altíssima, o espaço a percorrer é infimo. É tudo muito “apertado”…

Ora, em tais condições, é de se esperar que ocorram algumas colisões entre as partículas. Há, porém, um importantíssimo aspecto a considerar: quase todas as partículas são prótons, e, como é sabido, prótons repelem prótons (são de carga elétrica positiva).

Por aí podemos ver que as colisões entre prótons só podem ocorrer quando as velocidades são altíssimas, e estas só ocorrem onde as temperaturas também são altíssimas, ou seja, nas regiões próximas ao centro do Sol.

Além de colidirem ocasionalmente, os prótons ainda mais raramente interagem entre si. As reações termonucleares, às quais a estrela deve a geração de sua energia, processam a interação de quatro prótons (núcleos de átomos de hidrogênio), convertendo-os em um núcleo de átomo de hélio (composto de dois prótons e dois neutrons, e chamado de partícula alfa).

A massa desta nova partícula formada (alfa) é menor do que a soma das massas dos quatro prótons que interagiram. Esta massa que “desapareceu” foi convertida em energia (de acordo com a Relatividade de Einstein). É interessante observar que nesta conversão de matéria em energia, o Sol aniquila 4 milhões de toneladas de matéria, em cada segundo!

Toda energia é emitida pelas regiões centrais em forma de radiação eletromagnética: são os raios-gama, altíssimamente energéticos.

As reações nucleares, portanto, são realmente as responsáveis pela produção desta incrível energia. E agora, o que acontece? Os raios-gama têm que atravessar o Sol, do centro à “superficie”.

Este processo, por incrível que possa parecer, leva alguns milhões de anos. A radiação colide com elétrons, interfere com radiações térmicas locais e vai se degradando – vai perdendo energia. Depois de percorrer, acidentalmente, e não em linha reta, cerca de oito décimos do raio, a energia já degradada é transportada até a fotosfera (a superfície aparente) juntamente com as próprias massas gasosas (como um vento quente transporta a energia térmica com o próprio deslocamento de ar).

A este tipo de transporte de energia damos o nome de convecção. Em cerca de dois ou três meses, a convecção leva a energia até a fotosfera, percorrendo os dois décimos finais do raio.

O que chega à fotosfera é justamente o que ela emite; é a radiação a que nos referimos no início. É a que chega ao topo da atmosfera da Terra.

Assim, a energia efetivamente produzida é nuclear (raios-gama), e todo o resto é degradação.

Categories
Coluna do Astrônomo

Plutão e Sua Nova Família

O dia 24 de agosto de 2006 é um marco na história da Astronomia. Há alguns anos, como conseqüência do aperfeiçoamento das técnicas observacionais, vários corpos pequenos e distantes, semelhantes a Plutão, foram descobertos no Sistema Solar.

Esses novos corpos foram classificados como Objetos Transnetunianos, por se localizarem após a órbita de Netuno. Dentre os transnetunianos estão corpos pequenos, como cometas e asteróides, e outros um pouco maiores, semelhantes a Plutão.

A tendência é descobrirmos cada vez mais objetos nessa região que deve ser povoada por milhares de corpos. O fato de alguns transnetunianos terem tamanhos semelhantes ao de Plutão, levantou a questão de esses corpos serem também considerados planetas. A discussão se acirrou após a descoberta do transnetuniano 2003UB 3131, popularmente conhecido como Xena, que se mostrou ainda maior que Plutão.

É interessante lembrar que a partir do Sol temos os chamados planetas rochosos – Mercúrio, Vênus, Terra e Marte, seguidos pelos planetas chamados gigantes gasosos – Júpiter, Saturno, Urano e Netuno. Depois de Netuno, conhecíamos também Plutão, um corpo rochoso e pequeno, localizado na região do Sistema Solar dominada por planetas gigantes e gasosos…

Mas então foram observados os outros objetos semelhantes a Plutão no Sistema Solar. E o que fazer? Classificar esses objetos também como planeta, ou criar uma nova classificação para Plutão e seus companheiros semelhantes? Essa discussão surgiu porque não havia uma definição clara de planeta.

A discussão perdurou durante algum tempo no meio astronômico. Alguns, incluindo os descobridores de 2003 UB 313, defendiam aumentar o número de planetas do Sistema Solar. Nesse caso, o número de planetas tenderia sempre a aumentar, uma vez que sempre poderíamos descobrir mais objetos pequenos e distantes, como Plutão. Outros defendiam a mudança da categoria de Plutão, que deveria ser classificado de alguma outra maneira, junto com os transnetunianos semelhantes a ele.

A questão só poderia ser resolvida pela União Astronômica Internacional (IAU – sigla em inglês de International Astronomical Union ), uma entidade que, entre outras atribuições, faz a regulamentação de nomenclaturas, classificações e definições utilizadas na Astronomia. Durante a vigésima sexta reunião da IAU, na qual diversos assuntos foram discutidos, o problema de Plutão e seus companheiros foi resolvido.

No dia 24 de agosto de 2006, a União Astronômica Internacional publicou resoluções criando duas novas categorias de objetos do Sistema Solar: Planetas Clássicos e Planetas Anões. Plutão passa a ser planeta anão, e os outros planetas do Sistema Solar, planetas clássicos.

Segue abaixo tradução de parte das resoluções publicadas pela IAU, a respeito dessa mudança de classificação de alguns corpos do Sistema Solar.

RESOLUÇÕES

Resolução 5A é a definição essencial para o uso da palavra “planeta” e termos relacionados utilizados pela IAU. Resolução 5B adiciona a palavra “clássicos” para o nome coletivo dos oito planetas de Mercúrio até Netuno.

Resolução 6A cria para o uso da IAU uma nova classe de objetos, para a qual Plutão é o protótipo. Resolução 6B introduz o nome “objetos plutonianos” para essa classe. (Aqui a resolução continua com uma definição de plutoniano do dicionário Merriam-Webster. Em português, o Dicionário Houaiss da Língua Portuguesa, de 2001, define plutoniano como “relatrivo ao deus Plutão ou ao planeta de mesmo nome”.)

Após ter recebido informações de muitos lados – especialmente da comunidade geológica – o termo “Plúton” não será mais considerado.

Resolução da IAU: Definição de um Planeta no Sistema Solar

Observações contemporâneas estão mudando nosso entendimento de sistemas planetários, e é importante que nossa nomenclatura para os objetos reflita nosso entendimento corrente. Isso se aplica, em particular, para a designação ‘planetas’. A palavra ‘planeta’ originalmente descrevia ‘viajantes’, que eram conhecidos apenas como luzes que se deslocavam no céu. Descobertas recentes nos levam a criar uma nova definição, o que pode ser feito utilizando-se informações científicas disponíveis.

RESOLUÇÃO 5A.

A IAU resolve que planetas e outros corpos no nosso Sistema Solar são definidos em três categorias distintas da seguinte maneira:

(1) Um planeta 1 é um corpo celeste que (a) está em órbita ao redor do Sol, (b) tem suficiente massa para que sua própria gravidade se sobreponha a forças de corpo rígido de maneira que ele mantenha uma forma (aproximadamente redonda) em equilíbrio hidrostático, e (c) tem a vizinhança em torno de sua órbita livre.

(2) Um planeta anão é um corpo celeste que (a) está em órbita ao redor do Sol, (b) tem suficiente massa para que sua própria gravidade se sobreponha a forças de corpo rígido de maneira que ele mantenha uma forma 2 (aproximadamente redonda) em equilíbrio hidrostático, (c) não tem a vizinhança em torno de sua órbita livre, e (d) não é um satélite.

(3) Todos os outros objetos 3 orbitando o Sol serão referidos coletivamente como “Pequenos Corpos do Sistema Solar”.

1 Os oito planetas são: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.

2 Um processo da IAU será estabelecido para designar objetos incertos na categoria de planeta anão ou outras categorias.

3 Esses atualmente incluem a maioria dos asteróides do Sistema Solar, a maioria dos Objetos Transnetunianos (TNOs), cometas e outros corpos pequenos.

RESOLUÇÃO 5B.

Insira a palavra “clássico” após a palavra “planeta” na resolução 5A, Sessão (1), e nota de rodapé 1. Assim lê-se:

(1) Um planeta clássico 1 é um corpo celeste…

e

1 Os oito planetas clássicos são: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.

RESOLUÇÃO DA IAU: Plutão

RESOLUÇÃO 6A.

A IAU adiante resolve:
Plutão é um planeta anão pela definição acima e é reconhecido como o protótipo de uma nova categoria de objetos transnetunianos.

RESOLUÇÃO 6B.

A seguinte sentença se soma à Resolução 6A:
Essa categoria deve ser chamada de “objetos plutonianos”.

1- Em 14 de setembro de 2006, a IAU retira o nome 2003 UB313, e esse objeto passa a se chamar Éris, deusa grega da discórdia e da contenda. Bom nome para um astro que gerou divisão na comunidade astronômica, não acha? Seu satélite fica batizado de Disnomia. A resolução da IAU pode ser lida em
http://www.iau2006.org/mirror/www.iau.org/iau0605/index.html (em inglês)

Categories
Coluna do Astrônomo

Um Pouco de Cosmologia

Introdução

Imagine-se deitado na relva em uma agradável noite de outono. O céu está claro e, por sorte, é noite de Lua Nova. Quantas estrelas você veria? Com sorte, algo em torno de 6.000 (não que eu já tenha tido a paciência de contá-las). E já sabemos que cada uma delas é, por assim dizer, única e insubstituível; se não em cor e intensidade de brilho, propriedades intrínsecas, pelo menos em localização aparente e distância. E são as distâncias que as separam de nós as responsáveis por uma peculiaridade às vezes esquecida: vemo-nas como eram no passado.

Cada estrela que vemos é uma janela que se abre para o pretérito. E a exata época que vislumbramos nos é dada diretamente por sua distância, se medida em anos-luz (ou qualquer outra unidade do tipo “tempo”-luz. O Sol, por exemplo, está a oito minutos-luz de nós, portanto o vemos como era há oito minutos). Assim, podemos perscrutar o longínquo passado do Universo. Mas o que é o Universo?

Por sua própria origem, a palavra universo quer dizer “tudo junto”, “o todo”. Vem do latim, unus, um, e versus, particípio passado de vertere, girar. Seria, então, “aquilo que gira como um” (para os antigos, os objetos celestes giravam em torno da Terra). Esta definição é bastante importante para escaparmos de conceitos estranhos como “universo paralelo” e outros afins. Qualquer nova descoberta, física ou astronômica, teórica ou observacional, faz parte do Universo, pois ele é tudo. Só porque desconhecemos a existência de algo não podemos excluí-lo do Universo, uma arrogância sem tamanho.

Mas, lembre-se, estamos vislumbrando as estrelas. E se problemas semânticos sobre a palavra universo nos assolam, são logo deixados de lado. Mas se o Universo é tudo, e existe desde sempre, por que o céu noturno não nos aparece totalmente iluminado? Sim, pois sabemos que a luz das estrelas leva um certo tempo para nos atingir, seja ele 8 minutos ou 12 bilhões de anos. E se o Universo sempre existiu, por mais distante que as mais distantes estrelas se encontrem, sua luz chegaria até nós. Estrelas há muito extintas, muito mais velhas que a mais velha das estrelas conhecidas, nos brindariam com sua luz ainda hoje. E, portanto, estaríamos recebendo luz de todos os pontos de nosso céu. A noite seria clara como o dia. Mas isso não acontece. Este argumento é conhecido como paradoxo de Olbers, em homenagem ao astrônomo alemão Heinrich Olbers, o primeiro a ponderar sobre o assunto em 1823. Ele nos leva, por simples caminhos lógicos, a cogitar que o Universo teve um início, não existiu desde sempre.

Junte-se a este fato a descoberta de Edwin Hubble, sobre o afastamento das galáxias, e podemos começar a imaginar como teria sido esta origem. O início teria se dado em uma região bastante limitada, que se expandiu e se expande até os dias de hoje. Mas o que está se expandindo, afinal? Os componentes do Universo ou o Universo em si? A sutil diferença entre um caso e outro é que, no primeiro caso, estaremos admitindo um Universo vazio como palco dos acontecimentos astronômicos. Um vácuo infinito que, a partir de uma região densamente preenchida não se sabe como, serviu de cenário para a expansão de seus componentes. A segunda hipótese é mais plausível, apesar de (ou por causa de) sua maior complexidade. O Universo em si se expande, levando consigo seus constituintes. Assim, no início, o Universo era algo muito pequeno e denso.

Finito e Ilimitado

Então o Universo teve um início. Se teve início, deve ser finito. Sim, pois admitir que algo que foi criado possa ser infinito remete ao problema anterior: a expansão dos componentes sobre um Universo vazio. Precisaríamos admitir a hipótese da criação de matéria a partir de nada. E, mais uma vez, se assim fosse, não precisaríamos arbitrar um início ao Universo, além de termos que reformular todas as teorias de formação estelar. (No início da Cosmologia, postulou-se a tese do Universo estacionário, que se expandia mas via-se preenchido por novos componentes, criados do vácuo, que serviam para manter-lhe a densidade constante. Novamente, esbarramos no estranho conceito da criação espontânea de matéria.)

O Universo é finito. Mas, por sua própria definição, não pode ter limite. A teoria de expansão comumente nos impõe uma idéia de explosão, popularizada pelo termo Big Bang, “Grande Bum”. (Geralmente, o termo Big Bang é traduzido como “grande explosão”. Mas se levarmos em conta que foi cunhado em 1948, pelo astrônomo inglês Fred Hoyle, como uma troça à recém-lançada teoria de criação e evolução do Universo, vemos que “grande bum” faz maior justiça ao seu significado histórico.) E a esta explosão geralmente se seguem imagens apoteóticas de uma bola de energia se expandindo com velocidade, sendo seu interior o Universo, e seu exterior o Nada, esperando o momento de criação.

E se pudéssemos viajar a velocidades sequer imaginadas? Qualquer direção que tomássemos nos levaria, cedo ou tarde, a esta fronteira entre o Universo já feito e o “Universo em potencial”. E se atravessássemos este limite? Morreríamos, é claro, entrando na não-existência. Mas morreríamos sabendo que existe algo, um nada absoluto, além do Universo. O que conflita com nossa primeira definição. Então, não pode existir esta fronteira. O Universo não pode ter um limite.

O Universo é finito e ilimitado. Não é uma contradição? Não. Tomemos a superfície da Terra como exemplo. Ela é finita, obviamente. Se considerarmos um raio médio de 6.400km para o nosso planeta, sua superfície teria 515.000.000km², ignorando-se as inomogeneidades de morros, montanhas, vales e depressões. Tem um tamanho mensurável. É finita. Porém, é ilimitada. Caminhando-se por sobre ela, jamais encontraremos uma fronteira que nos force a abandoná-la. Não há limite. Assim como no Universo.

Há, porém, uma sutil diferença. Na superfície da Terra, temos apenas dois graus de liberdade. Atingimos qualquer ponto se combinarmos sucessivos movimentos do tipo “norte-sul” e “leste-oeste”. Ou, ainda, qualquer ponto nela será inequivocamente caracterizado através de duas grandezas, duas quantidades, dois valores: latitude e longitude. Dizemos que a superfície da Terra tem duas dimensões. (Em nossa linguagem coloquial, uma superfície sempre tem duas dimensões. É isso que a define como tal, diferenciando-a de uma linha, uma dimensão, ou sólido, três dimensões. Em Cosmologia, este conceito é mais amplo.)

Por ter apenas duas dimensões, é fácil vê-la “fechada”, isto é, finita e ilimitada. Basta imaginá-la inserida em um espaço de três dimensões. De fato, nem imaginar precisamos, pois todos sabemos que a Terra realmente flutua no espaço e que este possui três dimensões (para caracterizarmos um ponto específico da órbita de um satélite precisamos de três quantidades, por exemplo a latitude e a longitude de um ponto na Terra acrescidas da altitude em que o satélite se encontra acima deste ponto). Mas como imaginar um espaço de três dimensões finito e ilimitado, fechado em torno de si mesmo? Basta imaginá-lo curvando-se em direção a uma quarta dimensão!

A Quarta Dimensão

O que é a quarta dimensão? Alguns mais afoitos podem dizer que é o tempo, e não estariam errados. Mas lembre-se de que a Terra existe no tempo, fazendo de sua superfície algo tridimensional (se quisermos encontrar um navio, devemos saber sua latitude, longitude e a que horas foram calculadas), assim como o espaço passa a ter quatro dimensões (precisamos saber a que horas o satélite passará por sobre o determinado ponto da Terra), também chamado de espaço-tempo. Assim, vemos que o tempo não é a dimensão que precisamos. Precisamos de uma dimensão puramente espacial, como as três que já conhecemos. Ou não.

Veja bem, o Universo precisa curvar-se em uma direção que não é nenhuma das três que conhecemos (basicamente “direita-esquerda”, “frente-trás” e “em cima-embaixo”). O que não quer dizer que esta dimensão exista de fato (a discussão sobre sua existência chega a ser esotérica, pois nosso cérebro tridimensional não chega sequer a compreendê-la, quanto mais visualizá-la, sendo-nos relegado apenas o artifício das comparações como esta que estou fazendo: uma superfície fechada de duas dimensões precisa de uma terceira para existir, assim como uma de três precisa de uma quarta). Esta quarta dimensão pode ser apenas um artifício topológico (Topologia é a ciência que estuda a forma dos espaços matemáticos. Pode ser vista como uma interface entre a Cosmologia, puramente preocupada com a física dos fatos astronômicos, e a Geometria Diferencial, ramo da Matemática que estuda em detalhe estes espaços).

O que é um artifício topológico? Imagine uma daquelas telas de computador (ou televisão ou um daqueles telões publicitários) onde vemos uma mensagem constante, atravessando-a transversalmente. “Viva a vida”, digamos. O primeiro “V” aparece à direita do monitor, vão aparecendo as outras letras, a frase passeia por toda a tela e começa a morrer na extremidade oposta. Quando o último “a” já se está indo, vemos novamente o “V” surgir do lado direito. A tela tem duas dimensões, e a frase só reaparece do lado direito porque um programa interno identifica as extremidades.

Uma pessoa que nunca tivesse visto uma televisão poderia imaginar que ali dentro estava um cilindro com a inscrição “Viva a vida”. Ao girar, este cilindro faria a frase sumir de um lado da tela e reaparecer, logo depois, do lado oposto. Sendo o lado de um cilindro uma superfície bidimensional fechada, já sabemos que ele só pode existir em três dimensões. Assim, podemos explicar o que acontece em nossa tela admitindo a existência, de fato, de uma dimensão mais elevada, no caso, a terceira (o cilindro). Ou podemos utilizar um artifício topológico (a terceira dimensão não existe, na tela, mas suas extremidades estão identificadas entre si, de modo que o que desaparece de um lado aparecerá do outro).

Agora podemos entender porque a quarta dimensão não precisa existir, apesar de ser fundamental para a compreensão de um Universo finito e ilimitado. E podemos entender, também, para onde se dá a expansão do Universo. Pois se a lei de Hubble nos garante que todas as galáxias estão se afastando, sempre poderíamos atribuir este movimento a uma velocidade intrínseca a cada uma delas. “Elas se afastam porque estão vagando pelo Universo, e o fato de que nossa galáxia parece ser o ponto do qual todas fogem, o centro, apenas prova nossa importância no Universo.” Quanta presunção.

Imagine um balão de gás com pequenos botões costurados à sua superfície. Esta superfície é o Universo em questão e os botões nela contidos são as galáxias. Ao inflarmos o balão, o Universo se expande. Os botões, apesar de imóveis, ficam cada vez mais longe entre si. E cada botão vê todos os outros se afastando, julgando-se o centro deste Universo. Mas para nós, criaturas de três dimensões, é muito simples perceber verdades obscuras deste universo bidimensional. Seu centro se encontra dentro do balão (fora do Universo, então, que é só a superfície). E sua expansão se dá rumo à terceira dimensão. Assim, no Universo, todas as galáxias se vêem afastando-se umas das outras, quando na verdade todas estão imóveis (há um movimento próprio e individual, é verdade, mas ele não ofusca este afastamento geral).

O centro do Universo está fora dele, e aqui precisamos ter cuidado para não cairmos vítimas de nossas próprias armadilhas. Ao fazermos tal declaração, não estaríamos admitindo algo (um ponto hipotético que seja) além do Universo, destruindo a premissa de que tudo o que existe faz parte dele? Não necessariamente. Voltemos ao universo do balão de gás (já que só podemos tratar a quarta dimensão através de analogias). Ele é, por nossa própria definição, bidimensional. Tudo o que existe em sua superfície já faz parte dele, sendo conhecido ou não por seus eventuais habitantes. Mas o centro está na terceira dimensão, que a priori não faz parte do universo. Assim, se admitirmos que o centro do Universo se localiza na quarta dimensão, ela existindo ou não, não estamos ferindo nossas próprias definições iniciais.

A Grande Explosão

Já sabemos, então, que o Universo é tudo o que existe. É finito, ilimitado e se expande rumo a uma quarta dimensão, que pode ser apenas um artifício topológico. E teve uma origem. É desta origem que queremos tratar, agora.

Retroagindo a expansão, chegamos a um Universo diminuto, extremamente denso e quente. Muito quente. Sua enorme temperatura sugere uma estrutura bastante mais simples do que a atual. Na pior das hipóteses, podemos imaginar que todas as estruturas atômicas que hoje conhecemos não existiam, restando um caldo caótico de partículas elementares. Mas a desestruturação do Universo ia mais além: a própria energia se confundia com a matéria, coisa que não observamos nos dias de hoje. Em nossos tempos, matéria é matéria e energia é energia, embora ambas se relacionem através da famosa fórmula E=mc² , onde E é a energia, m é a massa e c é a velocidade da luz. Assim, no Universo jovem, matéria e energia comportavam-se quase que como uma única entidade.

Normalmente, a equação descrita acima, devida a Einstein, mostra como transformar massa em energia, fato presenciado nos dias atuais (a própria energia vem da matéria, através de reações atômicas). Mas no início do Universo, ocorria o inverso, pela simples razão de que o “aspecto” energia desta estranha entidade mista predominava: criava-se matéria a partir da energia. A súbita criação deste novo constituinte provocou uma expansão violenta: o Big Bang.

Um detalhe curioso deste processo é que a matéria sempre surge em pares de partículas opostas (nos laboratórios modernos faz-se o inverso: partículas opostas são juntadas, aniquilando-se e, no processo, gerando energia). Algumas partículas são conhecidas por muitos, por exemplo o elétron e o próton. Suas partículas opostas possuem massa de igual valor, mas carga elétrica trocada. Assim, a partícula oposta ao elétron é o antielétron, ou pósitron (previsto teoricamente em 1930, descoberto em 1932). O próton é aniquilado pelo antipróton e assim por diante. Estas partículas opostas formam o que se convencionou chamar de antimatéria. O fato de não a encontrarmos hoje livre na natureza não afeta sua plausibilidade, apesar de ser um calcanhar de Aquiles no modelo do Big Bang como foi inicialmente proposto (afinal, ele previa a criação de uma quantidade exatamente igual de matéria e antimatéria). Talvez existam regiões de antimatéria em nosso Universo (ou “universos de antimatéria” como gostam os mais alarmistas). A fronteira entre uma região e outra seria uma apoteótica aniquilação constante, uma eterna guerra pela existência. Estranhamente, nada disso foi sequer detectado.

Mas o Universo não começou aqui. Se voltarmos no tempo ainda mais, poderemos vislumbrar fenômenos ainda mais peculiares. (Lembre-se: estamos trilhando o caminho que fizeram os cosmólogos, partindo do Universo atual e voltando no tempo. A compressão e o decorrente aumento de temperatura já resultou em um caldo de matéria-energia. É natural que uma maior compressão resulte em fenômenos ainda mais estranhos, só obtidos teoricamente através de respostas a equações matemáticas – nunca de experimentos de laboratório.) Antes do Big Bang, mas agora já estamos no limiar do início de todas as coisas – um microssegundo após a origem do próprio espaço-tempo -, houve um período denominado de inflação.

Antes do Antes

O modelo teórico do Universo inflacionário, que vem complementar e atualizar a teoria do Big Bang, nos diz que num período de tempo absolutamente ínfimo, o Universo cresceu numa escala impressionante. Seria como se um ponto, o ponto final desta frase, atingisse o tamanho do grupo local de galáxias em menos de um piscar de olhos (este sim seria um Big Bang, mas por não haver matéria neste Universo primitivo, não se associa esta violenta expansão a uma explosão).

A inflação explica a assimetria entre matéria e antimatéria (o que é fundamental ao menos para começar o processo de expansão, pois no modelo do Big Bang não se conseguia explicar porque as partículas e antipartículas deixavam de se aniquilar para provocar a grande explosão). Como este modelo está baseado no que se chama de Teoria da Grande Unificação (GUT, da sigla em inglês), ele pressupõe uma equivalência entre as quatro forças existentes no Universo: gravitacional, eletromagnética, fraca e forte (estas duas últimas atuam nos núcleos dos átomos). E quando dizemos equivalência não queremos dizer que uma tem o mesmo valor do que a outra. Uma é exatamente a outra, não há diferença entre elas (a mais famosa unificação se deu entre a força elétrica e a força magnética, aparentemente distintas mas provenientes da mesma fonte). Nesta escala de tamanho, algo inacreditavelmente pequeno, estas forças são uma só, que é regida pela Mecânica Quântica. E flutuações quânticas no meio – uma densa sopa de energia-matéria conhecida por falso vácuo – poderiam provocar a diferença na quantidade de matéria e antimatéria existentes no Universo.

O termo correto para este fenômeno é quebra de simetria, mas há de se ter cuidado, pois esta simetria não se refere ao par matéria-antimatéria. Lembre-se de que estamos estudando os instantes antes do Big Bang. Não há matéria nem antimatéria neste estágio do Universo, apenas um meio permeado por um campo de força (não confundir com o “campo de força” usado em ficção científica. Este aqui é um campo da única força existente, semelhante em aspecto ao campo de força gravitacional que conhecemos tão bem). Esta misteriosa simetria – a palavra em si usada por físicos na falta de um termo melhor – é uma propriedade intrínseca do constituinte básico do Universo (quer em seu aspecto de matéria ou de energia).

E antes da inflação? Não há sentido na pergunta. O Universo, e com ele o espaço e o tempo, começaram ali, com um brevíssimo período de inflação, seguido pelo surgimento da matéria e da antimatéria, pela expansão e conseqüente resfriamento de tudo. Falar de antes da criação do tempo é como falar de algo ao norte do pólo norte. Não faz o menor sentido (apesar de ser muito mais fácil entender a analogia geográfica do que o caso cosmológico).

O Fim do Universo

Se não podemos mais avançar em nosso retorno ao passado, pois ele já não mais existe além deste ponto, vamos nos voltar para a direção oposta: o futuro. Como será o futuro do Universo? Ele vai se expandir indefinidamente? É possível. Este seria o chamado Universo aberto. Se a energia cinética da expansão, positiva, for maior do que a energia de atração gravitacional, negativa, o Universo nunca deixará de crescer. Este é um Universo de energia total positiva (calculada no momento do Big Bang ou agora; tanto faz pois ela é constante). Mas este Universo apresentaria uma curvatura negativa, como uma sela de cavalo (na direção longitudinal, ao longo do dorso, a sela se curva para cima. Já na direção transversal, a sela se curva para baixo). E isso o torna infinito, o que conflita com nossas definições anteriores.

Se a energia total do Universo for negativa, temos um Universo fechado, que se expande até um limite para então contrair-se, retornando ao ponto inicial onde tudo teve início. Este Universo apresenta curvatura positiva, como uma superfície esférica, que se curva para o mesmo lado em todas as direções. Pode, portanto, ser finito em tamanho. É este o modelo preferido pelos cosmólogos. Infelizmente, a matéria observada é aproximadamente 25 vezes menor do que o necessário para justificá-lo. Introduziu-se, então, a matéria escura, que nada mais é que uma espécie de matéria que não emite radiação em nenhum comprimento de onda. Esta matéria, predominante no Universo, seria a principal responsável pelo seu fechamento.

O que aconteceria após o colapso total do Universo é exatamente o que aconteceu antes de sua criação. Se é que este colapso é total. Do mesmo modo que só postulamos a teoria da inflação a partir de um tempo ínfimo, podemos parar o colapso um instante antes do fim. E por que não, a partir daí, considerar o recomeço de tudo? Uma nova inflação seguida, novamente, por um Big Bang. Muitos físicos privilegiam esta visão, o Universo oscilante, por motivos filosóficos. Ela escapa do conceito de uma criação original, fugindo habilmente da figura do criador (ou, se preferir, Criador).

Conclusão

Temos um modelo de Universo fechado, gravitacionalmente amarrado por matéria (escura ou não), finito e ilimitado que se expande. Seus limites temporais, início e fim, são muito semelhantes. Não há sentido em ir além de um ou outro. Mas lembre-se: isto é um modelo. Um mapeamento teórico. E o mapa nunca é o território em si.