Usamos cookies em nosso site para lhe dar a experiência mais relevante, lembrando suas preferências e repetindo visitas. Ao clicar em "Aceitar tudo", você concorda com o uso de TODOS os cookies. No entanto, você pode visitar "Configurações de cookies" para fornecer um consentimento controlado.

Visão geral da privacidade

Este site usa cookies para melhorar sua experiência enquanto você navega pelo site. Destes, os cookies categorizados conforme necessário são armazenados no seu navegador, pois são essenciais para o funcionamento das funcionalidades básicas do site. T...

Sempre ativado

Os cookies necessários são absolutamente essenciais para que o site funcione corretamente. Esta categoria inclui apenas cookies que garantem funcionalidades básicas e recursos de segurança do site. Esses cookies não armazenam nenhuma informação pessoal.

Quaisquer cookies que podem não ser particularmente necessários para o funcionamento do site e são usados especificamente para coletar dados pessoais do usuário através de análises, anúncios, outros conteúdos incorporados são denominados como cookies não necessários. É obrigatório obter o consentimento do usuário antes de executar esses cookies em seu site.

Categories
Coluna do Astrônomo Conteúdo científico Curiosidades

Júpiter Soberano

Depois de Marte, além do cinturão de asteroides, nós vamos encontrar o planeta Júpiter, o maior planeta do Sistema Solar e o primeiro de uma outra categoria de planetas. Enquanto os planetas mais internos (Mercúrio, Vênus, Terra e Marte) são planetas densos e pequenos, os planetas externos são chamados de gigantes gasosos: muito maiores, menos densos e compostos basicamente de gases. Destes o maior é Júpiter.

Júpiter é conhecido desde a antiguidade pois é fácil vê-lo no céu. Ele é um dos cinco planetas visíveis à vista desarmada: Mercúrio, Vênus, Marte, Júpiter e Saturno. Pelo seu movimento lento e o brilho intenso (é o quarto objeto natural mais brilhante visível no céu da Terra), várias civilizações antigas atribuíram grande destaque a Júpiter. Foi associado à maior divindade do Panteão grego: Zeus, o Deus dos Deuses e o rei do Olimpo. Muitos povos associaram-no ao seu deus do trovão.

Da esquerda para a direita: Júpiter (Roma), Thor (Escandinávia) e Zeus (Grécia).

Em 1610, o sábio italiano Galileu Galilei (1564-1642) registrou suas observações de Júpiter no livro Mensageiro Sideral. Este livro foi o primeiro registro metódico de observações celestes feitas através de um instrumento óptico: a recém-inventada luneta astronômica. Observando Júpiter, Galileu percebeu quatro pontos luminosos alinhados com o disco do planeta. Ao observar por um período notou um movimento pendular ao redor do astro maior. Não poderiam ser estrelas: eram os quatro maiores satélites de Júpiter. Mais tarde receberam a denominação de luas galileanas, em homenagem a Galileu.
Mesmo com um telescópio com baixo aumento é possível vê-las. Essa descoberta foi muito importante para a determinação de que a Terra não era o centro do Sistema Solar.

Luas Galileanas: no alto uma imagem telescópica. Abaixo fotos obtidas por sondas espaciais (da esquerda para a direita): Io, Europa, Ganimedes e Calixto.

Essas luas são Io, Europa, Calixto e Ganimedes. Cada uma destas é um pequeno mundo particular. A cada dia se descobre mais coisas interessantes sobre cada uma delas. Io é vulcânica e Europa tem um oceano recoberto de gelo que pode abrigar condições de vida. Esta é um dos mais esperados alvos de missões futuras.

Neste momento nós sabemos que existem pelo menos 79 luas jovianas, mas pode ser que existam mais. Como Júpiter tem uma gravidade muito intensa, ele recolheu muito material ao seu redor durante a sua formação bilhões de anos atrás. Algumas dessas luas podem ter se formado junto com o planeta. Outras luas podem ter sido asteroides ou cometas capturados ao longo da história do Sistema Solar.

Sendo essencialmente gasoso fica estranho falar em uma atmosfera joviana. O planeta, em termos de massa, é composto por 75% de hidrogênio e 24% de hélio. O 1% restante é composto de metano, amônia, fósforo e vapor de água, nesta ordem de abundância. O planeta gira rapidamente em torno do seu próprio eixo num período de quase 10 horas. Mas o ano joviano dura um pouco menos que 12 dos nossos anos terrestres.

Rotação da atmosfera joviana. Note a grande mancha vermelha um pouco à esquerda do centro.

Várias sondas espaciais já visitaram Júpiter. Algumas sobrevoaram e outras ficaram em órbita. A maior parte do que sabemos hoje deste planeta devemos a estes aparatos espaciais.

Primeiras sondas a sobrevoar Júpiter: Pioneer 10 e 11

As primeiras sondas a ultrapassar o cinturão de asteroides foram as Pioneer 10 (1973) e 11 (1974). Esta última chegou a meros 34.000 km da superfície nebulosa do planeta gigante. As primeiras fotos detalhadas de Júpiter e suas luas foram obtidas naquela época.

Voyager 1 e 2: primeira parada Júpiter.

Cinco anos mais tarde, duas sondas Voyager visitaram o planeta em um intervalo de poucos meses. Estas sondas sobrevoaram o planeta gigante e depois prosseguiram para outros destinos, como as sondas Ulysses (1992), Cassini (2000) e New Horizon (2007).

Sobrevoando Júpiter de passagem: Ulysses foi para o Sol, Cassini para Saturno e a New Horizon para Plutão e além.

A primeira sonda a orbitar Júpiter foi a Galileu (1995) que, apesar de uma problema na sua antena, transmitiu dados até 2003. Esta missão também incluiu um pequena sonda atmosférica que penetrou o envoltório gasoso do planeta e transmitiu dados antes de ser esmagada. Em 2016 a sonda Juno entrou em órbita do planeta. Particularmente interessantes foram a fotos de alta resolução dos polos jovianos com seus inúmeros vórtices de gás. Até o momento Juno ainda transmite dados.

Link externo:

Categories
Coluna do Astrônomo

Eclipse Solar na América

Na próxima segunda-feira, 21/08/2017, a sombra da Lua vai percorrer o território dos Estados Unidos da América diagonalmente, do noroeste (no estado do Oregon) até o sudeste (no estado da Carolina do Sul). Numa estreita faixa de uns 100km, o Sol será ocultado totalmente pela Lua durante alguns minutos.

Categories
Coluna do Astrônomo

O Dia do Asteroide

O Sistema Solar é composto do Sol (que concentra cerca de 90% da massa) e uma quantidade enorme de astros menores sem luz própria: planetas, planetas-anões, asteroides e cometas. Geralmente, astros menores que planetas (definidos em 2006) foram tratados, genericamente, por planetas menores, planetoides ou asteroides.

Conhecemos a órbita de quase um milhão de corpos menores (incluindo asteroides e cometas). Existem corpos intermediários, corpos que se assemelham a asteroides, com muitos traços de gases em sua composição, lembrando núcleos secos de cometas, sugerindo que alguns asteroides podem ter se originado de cometas. Foi o caso do astro Chiron, primariamente classificado como asteroide, mas, posteriormente, cogitou-se que seria um cometa, pela presença de material volátil e até pela formação de uma cauda. Outros astros da mesma família, chamados de Centauros, partilham características de cometas.

Diversos corpos menores do Sistema Solar comparados em escala.

A diferença entre cometa e asteroide é basicamente de composição. Os cometas são um amontoado de gases (vapor de água, gás carbônico, entre outros) e poeira, cuja densidade é baixa e natureza volátil. Ao se aproximarem do Sol, os gases sublimam e se forma uma cauda típica. Já os asteroides são corpos mais compactos e secos, compostos de silicatos e metais. Se um corpo destes é atraído para atmosfera terrestre e se aquece devido a interação com o ar, o efeito luminoso é chamado de meteoro. Se o corpo não se consumir todo na atmosfera e chegar a atingir o solo, é chamado de meteorito. Se o brilho do meteoro for muito grande usamos o termo bólido (fireball, em inglês).

A maior parte dos asteroides está entre as órbitas de Marte e Júpiter. Esta região é chamada de cinturão principal e comporta dezenas de milhares de corpos que variam de tamanho, desde alguns metros a centenas de quilômetros.

Em branco os asteroides do cinturão principal. Em verde os troianos (se distribuem à frente e atrás de Júpiter) e em laranja os Hildas que se movem em órbitas internas aos troianos.

O primeiro asteroide foi descoberto em 1801 pelo astrônomo italiano Guiseppe Piazzi (1746-1826). Recebeu o nome de Ceres e mede um pouco menos de mil quilômetros de diâmetro (o maior de todos). No início, foi considerado o planeta novo que faltava entre Marte e Júpiter. Havia um afastamento entre estes planetas que sempre sugeriu a presença de um planeta entre eles. Nos anos de 1802 e 1804, dois outros asteroides foram encontrados: Pallas (aproximadamente 545 km de diâmetro) e Juno (234 km). As descobertas sucessivas de mais corpos celestes nesta região acabaram por tirar o status de planeta de Ceres.

 

Órbitas de asteroides rasantes – NEOs.

Um grupo de asteroides que traz interesse especial para nós terráqueos são os chamados asteroides rasantes, que recebem a sigla inglesa NEOs (Near-Earth Objects). Estes corpos cruzam com certa frequência a órbita terrestre e têm o potencial de atingir o nosso planeta. Temos evidências de que isto já aconteceu no passado e não é impossível que torne a acontecer. Acredita-se, inclusive, que foi um impacto destes que no passado extinguiu os dinossauros.

Um exemplo disto aconteceu em fevereiro de 2013, na cidade de Chelyabinsk (Rússia), sacudida pelo rugido de um corpo de aproximadamente 20 metros que penetrou a atmosfera terrestre a mais de 60.000 km/h. O meteoro explodiu a dezenas de quilômetros de altura e não atingiu nenhuma região habitada. Entretanto, o deslocamento do ar foi forte o bastante para gerar uma onda de choque. Esta onda sonora estilhaçou centenas de janelas de vidro, o que causou ferimentos em mais de 1.200 pessoas. Este foi o maior impacto registrado desde o evento em Tunguska (Rússia) no ano de 1908. Imagine se o impacto fosse direto?

Existem vários grupos que dedicam estudos sobre como reagir numa situação destas. Exemplos destas instituições:

A sonda Dawn, atualmente, nos tem trazido muitas revelações sobre Vesta e Ceres. Pontos claros encontrados no interior de uma cratera (foto abaixo) tem intrigado os cientistas. Muitos segredos dos asteroides já começam a ser desvendados.

Sonda Dawn e o asteroide Ceres: note os dois pontos brilhantes na cratera do asteroide.

No próximo dia 30 de junho é comemorado o Dia do Asteroide. Este evento foi criado em 2015 por um grupo encabeçado pelo astrofísico Brian May (guitarrista da banda de rock Queen), Danica Remy (da Fundação B612), Grigorij Richters (diretor de cinema) e Rusty Schweickart (ex-astronauta da NASA). A ideia era implementar o interesse público e científico nos asteroides com o propósito de criar defesas contra a possibilidade de uma colisão com a Terra. Desde então, várias atividades de divulgação científica têm sido realizadas anualmente em todo mundo. Nós, da Fundação Planetário do Rio de Janeiro, vamos conversar sobre asteroides no dia anterior, 29/6, a partir das 20h, em uma live através do Facebook do Planetário.

Links interessantes:

 

Categories
Coluna do Astrônomo

Saturno em destaque

O planeta Saturno é o segundo maior do nosso Sistema Solar: um gigante gasoso cercado de anéis. Desde que Galileu Galilei desenvolveu a primeira luneta astronômica (1610) o planeta atrai a atenção pelo seu vistoso sistema de anéis, o mais notável entre os demais planetas gigantes (Júpiter, Urano e Netuno).

Oposição de Saturno

No próximo dia 15, em pleno feriado de Corpus Christi, Saturno estará em uma posição especialmente favorável para observação. O planeta gigante estará em linha com a Terra e o Sol. Dizemos que ele estará em oposição, uma vez o que o planeta estará diametralmente oposto ao Sol do ponto de vista da Terra. É nesta ocasião que a distância à Terra é menor (maior brilho aparente e maior tamanho de imagem) e o planeta estará mais tempo visível (durante toda a noite: do pôr ao nascer do Sol). 

Oposição de Saturno
Representação fora de escala das posições do Sol, da Terra e de Saturno durante a oposição.

A sonda Cassini-Huygens

Animação da Sonda Cassini-Huygens.

Faz quase vinte anos que esta sonda complexa foi lançada. A Cassini-Huygens foi produto da colaboração da NASA com a Agência Espacial Italiana, que mais tarde passou a fazer parte da ESA. Curiosamente a sonda não foi enviada em uma rota direta a Saturno. Primeiro a sonda foi enviada para o interior do Sistema Solar na direção de Vênus. A sonda fez duas passagens próximas a este planeta e depois mais uma passagem próxima à Terra. Estas manobras, conhecidas como estilingues gravitacionais, tiveram a função de acelerar a nave usando a gravidade dos planetas para aumentar sua velocidade e encurtar a viagem. A sonda passou por Júpiter antes de chegar ao planeta dos anéis. O destino final da sonda será colidir com Saturno em setembro próximo.

Os anéis

Desde de que foram descobertos os anéis são um desafio. Como explicar sua natureza? Seriam sólidos, gasosos, líquidos? James Clerk Maxwell (1831-79) foi o primeiro a expor uma explicação embasada sobre a natureza dos anéis em 1847: partículas. Isso mesmo, os anéis não são um corpo único, mas sim uma quantidade enorme de pequenos corpos (minúsculas luas de gelo e poeira, podemos dizer) que orbitam no plano equatorial do planeta. Fotos incríveis foram tiradas deste complexo sistema de anéis. Em meio aos anéis são encontradas luas que influenciam a distribuição destas partículas.

As luas

Acima: imagem do disco de Titã com sua atmosfera alaranjada. Abaixo: o satélite visto contra Saturno ao fundo.

Conhecemos 62 luas de Saturno até o momento que escrevo estas linhas. Algumas não passam de simples pedras irregulares, mas algumas luas de Saturno guardam verdadeira diversidade de composição e de forma. O satélite mais interessante do Sistema Solar é Titã. Maior que nossa Lua, Titã é portadora de uma densa atmosfera de nitrogênio. A superfície titânica é coberta de lagos de metano. A sonda Huygens, que viajou acoplada a Cassini, penetrou a atmosfera deste satélite em 2005.

Acima à esquerda: detalhes da superfície gelada de Encélado. Abaixo: imagens das plumas de vapor d´água que o satélite joga no espaço.

Em 2008 descobriu-se que o satélite Encélado emite plumas de vapor de água. Isto sugere fortemente que este satélite tem um oceano sob uma camada de gelo. Até então só se conhecia um outro corpo com esta característica: Europa, satélite de Júpiter.

Categories
Coluna do Astrônomo

A origem dos planetas. Novos mundos, novas perguntas

Há apenas 25 anos, os noticiários sobre as novidades da Astronomia davam conta dos feitos do Telescópio Espacial Hubble, e nenhuma delas contemplava a descoberta de novos planetas. De repente, em 1995, o meio astronômico entrou em ebulição, com a descoberta de um planeta fora do Sistema Solar. Desde então, essa área da Astronomia tornou-se um campo de pesquisa extremamente dinâmico.

Quando eu ainda iniciava a vida acadêmica, durante um projeto de iniciação científica, em 1992, tive a oportunidade de presenciar de pertinho todo esse rebuliço. Sob a orientação do Dr. Celso Batalha, eu investiguei algumas estrelas bem jovens, com prováveis discos ao redor. Esses discos, acreditávamos, eram os “berçários” não só das estrelas, mas também de planetas. Fizemos diversas observações e obtivemos resultados interessantes que renderam um artigo internacional, mas nenhuma evidência concreta de planetas girando ao redor das estrelas. Uma estrela em particular – TW Hydrae –,  era um  alvo muito interessante, por ser parecida com o nosso Sol. No entanto, mostrou-se um verdadeiro “labirinto”, pois apresentava um comportamento errático, que impedia qualquer tentativa de interpretação única para o que víamos.

“Chegará um tempo em que enxergaremos mais distante. Poderemos observar planetas como a Terra.”

-Christopher Wren, astrônomo inglês (1657)

Em 6 de outubro 1995, o quadro começou a mudar após o anúncio da descoberta de um planeta orbitando a estrela 51 Pegasi. De forma gradual outros planetas foram descobertos. Com o desenvolvimento de técnicas e instrumentos cada vez mais precisos, presenciamos um verdadeiro boom de planetas. Hoje, o número de planetas conhecidos fora do Sistema Solar – os chamados exoplanetas –, ultrapassa 3.500. Esse número deve ser muito maior, pois as técnicas ainda privilegiam alguns tipos de planetas. 

Talvez a quantidade de exoplanetas seja surpreendente para você. Acontece que os planetas são subprodutos naturais no processo de formação de estrelas. Isso mesmo, é quase inevitável! Nesse sentido, os exoplanetas são fascinantes pois podem nos ajudar a responder questões sobre o nosso próprio Sistema Solar.

O emprego de técnicas e instrumentos modernos gerou uma abundância de dados sobre as galáxias e as estrelas, que possibilitou o desenvolvimento de modelos e teorias sobre a formação de estrelas e de planetas.

As estrelas se formam no interior de enormes nuvens de gás e poeira, chamadas nebulosas de formação estelar. Existem várias por aí, sendo uma das mais famosas, a Nebulosa de Órion. Ela está próxima das Três Marias e, numa noite sem Lua e num local longe da luz urbana, pode ser vista até sem telescópio. 

criando_planetas1
Constelação de Órion sobre El Castillo, templo de Kukulkan, Chichen Itza/México. A Nebulosa de Órion está indicada por um traço amarelo. Crédito da foto: Stéphane Guisard.

No interior das nebulosas de formação estelar, algumas regiões podem apresentar maior concentração de gás e poeira, dando início ao processo de contração gravitacional. A contração cria objetos cada vez mais densos, verdadeiras aglomerações de matéria. Ao mesmo tempo, o movimento da nuvem é transferido para esses núcleos, que ganham cada vez mais velocidade de rotação, como resultado da contração.

Mauricio_Fernando
Nebulosa de Órion. Fotografia obtida no Planetário da Gávea por Fernando Vieira e Maurício Arbex em 20/03/2017.

A rápida rotação faz com que o material se achate, na forma de um disco. Em seu centro, bem mais quente, tem início a formação de uma estrela. No disco, ao redor do núcleo, o material aos poucos se aglomera em algumas regiões, formando objetos cada vez maiores – os planetesimais. Por essa razão esses discos são chamados discos proto-planetários.

Com a estrela formada, sua radiação expele boa parte do gás contido no disco, restando apenas as estruturas mais compactas, como os planetas. Nosso Sistema Solar apresenta algumas evidências de ter passado pelo processo de expulsão de gás. Por exemplo: os planetas mais próximos do Sol são menores e compostos, em sua maior parte, por rochas e metais. Já os planetas mais distantes do Sol são gigantes gasosos.

Fora do Sistema Solar, evidências da existência de discos proto-planetários não faltam. Por exemplo, na própria Nebulosa de Órion, o Telescópio Hubble encontrou vários deles. Veja abaixo alguns.

HSTproplyds
Discos proto-planetários, na Nebulosa de Órion, observados pelo Telescópio Espacial Hubble.

Um dos resultados mais emblemáticos para mim foi obtido há exatamente um ano, quando o recém-construído observatório ALMA anunciou observações fresquinhas, com uma técnica que não era disponível em 1992. E advinha de quem? Isso mesmo, TW Hydrae. E como a imagem abaixo não deixa dúvidas, temos um disco proto-planetário ao redor da estrela. E, naturalmente, indicações claras da presença de objetos orbitando a estrela (os “vazios” no disco).

criando_planetas2
Imagem do disco proto-planetário ao redor da estrela TW Hydrae obtida pelo ALMA. Crédito da imagem: S. Andrews (Harvard-Smithsonian CfA), ALMA (ESO/NAOJ/NRAO).

Esse é um caso emblemático para mim, mas muitos outros sistemas similares já foram descobertos.

Já chegamos num estágio da ciência em que é possível observar planetas orbitando outras estrelas. Estamos apenas começando, mas os resultados já são impressionantes! A imagem abaixo, divulgada em janeiro deste ano, é uma sequência de imagens obtidas ao longo de sete anos da estrela HR 8799 e de quatro planetas girando ao seu redor.

download
Estrela HR 8799 e seus quatro planetas. A estrela foi “bloqueada” para que o seu brilho não ofuscasse o dos planetas. O sistema está distante, 129 anos-luz, e se encontra na constelação do Pégaso. Crédito: Jason Wang and Christian Marois.

Há cerca de um mês, a NASA divulgou a última novidade do Telescópio Espacial Spitzer: a descoberta, pela primeira vez, de um sistema com sete planetas do tamanho da Terra girando ao redor de uma estrela – o sistema Trappist 1. E tem mais, três dos planetas estão localizados na zona de habitabilidade – uma região ao redor da estrela central na qual planetas rochosos têm boa probabilidade de possuir água líquida!

Os dados sobre esse sistema planetário indicam que os planetas estão sujeitos a forças de maré intensas, como resultado de sua proximidade à estrela central. Isso significaria que o mesmo lado do planeta está perpetuamente voltado para o Sol e, portanto, neste lado é sempre dia.

This infographic displays some artist's illustrations of how the seven planets orbiting TRAPPIST-1 might appear — including the possible presence of water oceans — alongside some images of the rocky planets in our Solar System. Information about the size and orbital periods of all the planets is also provided for comparison; the TRAPPIST-1 planets are all approximately Earth-sized.
Ilustração dos sete planetas orbitando o sistema TRAPPIST-1, incluindo a possibilidade de oceanos de água. Embaixo, planetas rochosos do Sistema Solar. Crédito: NASA.

 

Após esses 25 anos, a pergunta já não é se os exoplanetas existem, mas quantos deles têm características semelhantes às da Terra e possam, eventualmente, abrigar alguma forma de vida. Novos rebuliços nos aguardam?

 

 

 

 

 

Categories
Coluna do Astrônomo

Júpiter em oposição

 

Por Paulo Cesar R. Pereira, astrônomo

 

 

Júpiter é o maior planeta do Sistema Solar, e também, o segundo planeta mais brilhante, depois de Vênus. A observação por meio de um pequeno telescópio permite a observação da sua atmosfera, totalmente coberta por nuvens que envolvem o planeta, inclusive a grande “mancha vermelha”. 

 

Com pequenos instrumentos é também possível observar seus quatro maiores satélites (Io, Europa, Ganimedes e Calisto), e refazer as famosas observações realizadas por Galileu Galilei em 1609.

 

Ao longo dos meses de março e abril, teremos condições bem favoráveis para a observação desse belo planeta. Isso por conta do fenômeno chamado “oposição de Júpiter”, que atingirá o seu ápice no dia 8 de março próximo.

 

Durante a “oposição de Júpiter”, que ocorre a cada 13 meses aproximadamente, Júpiter fica oposto ao Sol em relação à Terra. Como resultado, Júpiter fica bem mais brilhante e o seu tamanho aparente aumenta como resultado da aproximação (Júpiter estará a 663 milhões de quilômetros da Terra). Além disso, o fenômeno faz com que o planeta gigante seja visível ao longo da noite inteira.

 

foto tamanho site 1

 

O planeta poderá ser observado mesmo sem o uso de instrumentos, bastando olhar na direção do leste (nascente), a partir das 19h15min. A carta celeste abaixo apresenta a localização de Júpiter no dia 8 de março às 21h. Aproveite a ocasião para identificar algumas constelações. Boa observação!

 

Por Paulo Cesar R. Pereira, astrônomo

Categories
Coluna do Astrônomo

Descobriram o nono planeta?

Para resumir: não, não foi descoberto astro algum. Então, o que aconteceu?

Recentemente, astrônomos do renomado centro de pesquisas Caltech (Mike Brown e Konstantin Batygin) publicaram um artigo sugerindo a existência de um planeta tão grande quanto Netuno e muito mais distante. Este planeta hipotético, informalmente chamado de “Planeta X” ou “Nono Planeta”, foi sugerido como solução para o arranjo das órbitas de seis astros do chamado cinturão de Kuiper. Este cinturão é composto por diversos pequenos astros gelados além da órbita de Netuno. Plutão é o maior astro deste cinturão.

Isso é resultado de poderosas simulações matemáticas que tentam justificar o movimento de certos astros transnetunianos descobertos nos últimos dez anos. Estes objetos foram classificados em um grupo denominado em inglês “Detached Objects” (algo como “Objetos Separados” em uma tradução livre). Estes astros recebem este nome por terem órbitas suficientemente destacadas da influência gravitacional imediata de Netuno.

Não é a primeira vez que alguém sugere a existência de planetas além de Netuno. Em 2012 um brasileiro, o astrônomo Rodney Gomes, também fez cálculos sugerindo a existência de um planeta dentro do cinturão responsável por particularidades do movimento destes corpos. Ano passado, os astrônomos Chad Trujillo e Scott Sheppard publicaram um artigo na famosa revista Nature discutindo sobre um dos objetos usados na pesquisa de Brown e Batygin. Eles também sugeriram a existência de um “Nono Planeta” influenciando as órbitas dos corpos mais externos do cinturão de Kuiper.

Nem os telescópios mais potentes têm alguma imagem que confirme estes cálculos teóricos por enquanto. O telescópio japonês Subaru é um dos possíveis instrumentos para começar esta busca. Existem astrônomos ainda céticos com relação à sua existência. Agora é esperar que os diversos programas de rastreio de objetos celestes confirmem ou não a existência deste nono planeta.

Assista ao programa Space Today sobre o assunto (em português):

Brasileiro que também pesquisa a existência de um planeta transneptuniano:
http://noticias.terra.com.br/ciencia/astronomo-brasileiro-da-novo-rumo-a-busca-pelo-planeta-x,28a98116492da310VgnCLD200000bbcceb0aRCRD.html

Telescópio Subaru
https://pt.wikipedia.org/wiki/Telesc%C3%B3pio_Subaru

Categories
Coluna do Astrônomo

O Sol: Um Reator Nuclear

Por Sergio Freitas

Uma grande parte das fontes naturais de energia com que contamos deriva da energia que recebemos do Sol. É este o responsável pelas energias eólica e hidráulica, para citar alguns exemplos.

Mas, afinal, o que é que o nosso planeta recebe do Sol? Recebe, basicamente, radiação eletromagnética, além de um influxo de partículas (principalmente prótons) que pouco tem a ver com o tema em questão.

A superfície da Terra, contudo, não recebe toda a radiação que o Sol nos envia, pois a nossa atmosfera absorve boa parte dela. A camada atmosférica bloqueia raios-X, parte dos raios ultravioleta, e partes diversas da radiação infravermelha. Não fosse esta absorção, particularmente a dos raios-X e ultravioletas, o Sol, fonte da vida, seria a fonte da morte…

A radiação que o Sol emite sai da sua “superfície”; sai de uma fina camada periférica com poucas dezenas de quilômetros de espessura. Sai, mas não nasce ali; ela resulta de processos altamente complexos que se desenvolvem no seu interior.

O Sol é uma imensa massa esférica gasosa, com cerca de dois octilhões de toneladas, e com um diâmetro de 1.391.000 quilômetros. Uma vez que, devido à gravitação, todas as partícluas constituintes de uma massa são atraidas para o centro desta, é óbvio que a densidade do Sol cresce com a proximidade ao centro.

Com efeito, nas regiões centrais, a densidade chega a cerca de 160 ou 180 gramas por centímetro cúbico (a densidade do chumbo é cerca de 11, nas mesmas unidades). Apesar deste alto valor, a matéria continua a ser gasosa; se,por milagre, desaparecescem as camadas exteriores (e o seu respectivo peso), a expansão da matéria central seria intantânea. ocorreria uma explosào inimaginável.

Ora, como é sabido, à medida que um gás vai sendo comprimido, a sua temperatura sobe. Assim, a temperatura nas regiões centrais do Sol deve ser altíssima. De fato é: atinge cerca de 14 milhões de graus. A temperaturas desta ordem, os átomos são completamente ionizados e perdem os seus elétrons, pois a imensíssima maioria dos átomos presentes é de hidrogênio (que, normalmente, só tem um próton).

Por outro lado, à medida que um gás é aquecido, suas partículas agitam-se cada vez mais. Daí que o gás exerce uma pressão para fora, cada vez maior. Estamos, pois, diante de uma tendência ao equilíbrio: a gravitação atraindo para o centro, e a pressão, agindo ao contrário, isto é, “empurrando” o gás para fora.

A movimentação das partículas é cada vez mais rápida, à medida que a temperatura aumenta. Porém, a densidade é enorme, como vimos. Deste modo, embora a velocidade das partículas seja altíssima, o espaço a percorrer é infimo. É tudo muito “apertado”…

Ora, em tais condições, é de se esperar que ocorram algumas colisões entre as partículas. Há, porém, um importantíssimo aspecto a considerar: quase todas as partículas são prótons, e, como é sabido, prótons repelem prótons (são de carga elétrica positiva).

Por aí podemos ver que as colisões entre prótons só podem ocorrer quando as velocidades são altíssimas, e estas só ocorrem onde as temperaturas também são altíssimas, ou seja, nas regiões próximas ao centro do Sol.

Além de colidirem ocasionalmente, os prótons ainda mais raramente interagem entre si. As reações termonucleares, às quais a estrela deve a geração de sua energia, processam a interação de quatro prótons (núcleos de átomos de hidrogênio), convertendo-os em um núcleo de átomo de hélio (composto de dois prótons e dois neutrons, e chamado de partícula alfa).

A massa desta nova partícula formada (alfa) é menor do que a soma das massas dos quatro prótons que interagiram. Esta massa que “desapareceu” foi convertida em energia (de acordo com a Relatividade de Einstein). É interessante observar que nesta conversão de matéria em energia, o Sol aniquila 4 milhões de toneladas de matéria, em cada segundo!

Toda energia é emitida pelas regiões centrais em forma de radiação eletromagnética: são os raios-gama, altíssimamente energéticos.

As reações nucleares, portanto, são realmente as responsáveis pela produção desta incrível energia. E agora, o que acontece? Os raios-gama têm que atravessar o Sol, do centro à “superficie”.

Este processo, por incrível que possa parecer, leva alguns milhões de anos. A radiação colide com elétrons, interfere com radiações térmicas locais e vai se degradando – vai perdendo energia. Depois de percorrer, acidentalmente, e não em linha reta, cerca de oito décimos do raio, a energia já degradada é transportada até a fotosfera (a superfície aparente) juntamente com as próprias massas gasosas (como um vento quente transporta a energia térmica com o próprio deslocamento de ar).

A este tipo de transporte de energia damos o nome de convecção. Em cerca de dois ou três meses, a convecção leva a energia até a fotosfera, percorrendo os dois décimos finais do raio.

O que chega à fotosfera é justamente o que ela emite; é a radiação a que nos referimos no início. É a que chega ao topo da atmosfera da Terra.

Assim, a energia efetivamente produzida é nuclear (raios-gama), e todo o resto é degradação.

Categories
Coluna do Astrônomo

Plutão e Sua Nova Família

O dia 24 de agosto de 2006 é um marco na história da Astronomia. Há alguns anos, como conseqüência do aperfeiçoamento das técnicas observacionais, vários corpos pequenos e distantes, semelhantes a Plutão, foram descobertos no Sistema Solar.

Esses novos corpos foram classificados como Objetos Transnetunianos, por se localizarem após a órbita de Netuno. Dentre os transnetunianos estão corpos pequenos, como cometas e asteróides, e outros um pouco maiores, semelhantes a Plutão.

A tendência é descobrirmos cada vez mais objetos nessa região que deve ser povoada por milhares de corpos. O fato de alguns transnetunianos terem tamanhos semelhantes ao de Plutão, levantou a questão de esses corpos serem também considerados planetas. A discussão se acirrou após a descoberta do transnetuniano 2003UB 3131, popularmente conhecido como Xena, que se mostrou ainda maior que Plutão.

É interessante lembrar que a partir do Sol temos os chamados planetas rochosos – Mercúrio, Vênus, Terra e Marte, seguidos pelos planetas chamados gigantes gasosos – Júpiter, Saturno, Urano e Netuno. Depois de Netuno, conhecíamos também Plutão, um corpo rochoso e pequeno, localizado na região do Sistema Solar dominada por planetas gigantes e gasosos…

Mas então foram observados os outros objetos semelhantes a Plutão no Sistema Solar. E o que fazer? Classificar esses objetos também como planeta, ou criar uma nova classificação para Plutão e seus companheiros semelhantes? Essa discussão surgiu porque não havia uma definição clara de planeta.

A discussão perdurou durante algum tempo no meio astronômico. Alguns, incluindo os descobridores de 2003 UB 313, defendiam aumentar o número de planetas do Sistema Solar. Nesse caso, o número de planetas tenderia sempre a aumentar, uma vez que sempre poderíamos descobrir mais objetos pequenos e distantes, como Plutão. Outros defendiam a mudança da categoria de Plutão, que deveria ser classificado de alguma outra maneira, junto com os transnetunianos semelhantes a ele.

A questão só poderia ser resolvida pela União Astronômica Internacional (IAU – sigla em inglês de International Astronomical Union ), uma entidade que, entre outras atribuições, faz a regulamentação de nomenclaturas, classificações e definições utilizadas na Astronomia. Durante a vigésima sexta reunião da IAU, na qual diversos assuntos foram discutidos, o problema de Plutão e seus companheiros foi resolvido.

No dia 24 de agosto de 2006, a União Astronômica Internacional publicou resoluções criando duas novas categorias de objetos do Sistema Solar: Planetas Clássicos e Planetas Anões. Plutão passa a ser planeta anão, e os outros planetas do Sistema Solar, planetas clássicos.

Segue abaixo tradução de parte das resoluções publicadas pela IAU, a respeito dessa mudança de classificação de alguns corpos do Sistema Solar.

RESOLUÇÕES

Resolução 5A é a definição essencial para o uso da palavra “planeta” e termos relacionados utilizados pela IAU. Resolução 5B adiciona a palavra “clássicos” para o nome coletivo dos oito planetas de Mercúrio até Netuno.

Resolução 6A cria para o uso da IAU uma nova classe de objetos, para a qual Plutão é o protótipo. Resolução 6B introduz o nome “objetos plutonianos” para essa classe. (Aqui a resolução continua com uma definição de plutoniano do dicionário Merriam-Webster. Em português, o Dicionário Houaiss da Língua Portuguesa, de 2001, define plutoniano como “relatrivo ao deus Plutão ou ao planeta de mesmo nome”.)

Após ter recebido informações de muitos lados – especialmente da comunidade geológica – o termo “Plúton” não será mais considerado.

Resolução da IAU: Definição de um Planeta no Sistema Solar

Observações contemporâneas estão mudando nosso entendimento de sistemas planetários, e é importante que nossa nomenclatura para os objetos reflita nosso entendimento corrente. Isso se aplica, em particular, para a designação ‘planetas’. A palavra ‘planeta’ originalmente descrevia ‘viajantes’, que eram conhecidos apenas como luzes que se deslocavam no céu. Descobertas recentes nos levam a criar uma nova definição, o que pode ser feito utilizando-se informações científicas disponíveis.

RESOLUÇÃO 5A.

A IAU resolve que planetas e outros corpos no nosso Sistema Solar são definidos em três categorias distintas da seguinte maneira:

(1) Um planeta 1 é um corpo celeste que (a) está em órbita ao redor do Sol, (b) tem suficiente massa para que sua própria gravidade se sobreponha a forças de corpo rígido de maneira que ele mantenha uma forma (aproximadamente redonda) em equilíbrio hidrostático, e (c) tem a vizinhança em torno de sua órbita livre.

(2) Um planeta anão é um corpo celeste que (a) está em órbita ao redor do Sol, (b) tem suficiente massa para que sua própria gravidade se sobreponha a forças de corpo rígido de maneira que ele mantenha uma forma 2 (aproximadamente redonda) em equilíbrio hidrostático, (c) não tem a vizinhança em torno de sua órbita livre, e (d) não é um satélite.

(3) Todos os outros objetos 3 orbitando o Sol serão referidos coletivamente como “Pequenos Corpos do Sistema Solar”.

1 Os oito planetas são: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.

2 Um processo da IAU será estabelecido para designar objetos incertos na categoria de planeta anão ou outras categorias.

3 Esses atualmente incluem a maioria dos asteróides do Sistema Solar, a maioria dos Objetos Transnetunianos (TNOs), cometas e outros corpos pequenos.

RESOLUÇÃO 5B.

Insira a palavra “clássico” após a palavra “planeta” na resolução 5A, Sessão (1), e nota de rodapé 1. Assim lê-se:

(1) Um planeta clássico 1 é um corpo celeste…

e

1 Os oito planetas clássicos são: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.

RESOLUÇÃO DA IAU: Plutão

RESOLUÇÃO 6A.

A IAU adiante resolve:
Plutão é um planeta anão pela definição acima e é reconhecido como o protótipo de uma nova categoria de objetos transnetunianos.

RESOLUÇÃO 6B.

A seguinte sentença se soma à Resolução 6A:
Essa categoria deve ser chamada de “objetos plutonianos”.

1- Em 14 de setembro de 2006, a IAU retira o nome 2003 UB313, e esse objeto passa a se chamar Éris, deusa grega da discórdia e da contenda. Bom nome para um astro que gerou divisão na comunidade astronômica, não acha? Seu satélite fica batizado de Disnomia. A resolução da IAU pode ser lida em
http://www.iau2006.org/mirror/www.iau.org/iau0605/index.html (em inglês)

Categories
Coluna do Astrônomo

O Sistema Solar

 

Ao contemplarmos o céu noturno, notamos que existem alguns astros que não cintilam como as estrelas e se encontram próximos à eclíptica – o caminho que vemos o Sol percorrer durante o ano. Em uma observação mais demorada, iremos notar, com o passar dos dias, que eles se deslocam em relação às estrelas. A estes astros damos o nome de planetas.

Desde a Antiguidade são conhecidos cinco planetas (são vistos à vista desarmada): Mercúrio, Vênus, Marte, Júpiter e Saturno. Posteriormente foram acrescentados mais três planetas (estes só vistos com o auxílio de telescópios): Urano, Netuno e Plutão (este último recebeu uma nova classificação a partir de 2006 – ver mais detalhes mais adiante). A Terra completa a lista destes “astros errantes”.

O movimento aparente dos planetas e das estrelas no céu levou o homem antigo a pensar que a Terra era o centro do Universo. Foram então elaborados modelos que explicavam a “harmonia” da esfera celeste. O mais influente desses modelos ficou conhecido como Ptolomaico, por ter sido idealizado por Ptolomeu, no século II depois de Cristo.

Esse modelo parecia explicar bem o Universo até serem feitas observações mais apuradas no século XV, quando o astrônomo polonês Nicolau Copérnico “transferiu” o centro para o Sol e tornou a Terra apenas mais um planeta a girar em torno deste astro.

Hoje sabemos que também o Sol não está no centro do Universo, ele é apenas mais uma entre as 200 bilhões de estrelas, aproximadamente, que giram ao redor do centro de nossa galáxia, a Via Láctea. Esta por sua vez também não está no centro do Universo.

Origem do Sistema Solar

A teoria mais aceita, atualmente, foi elaborada em 1948 por Fred Hoyle e Hannes Alfren. Supõe que o Sistema Solar teve origem numa grande nuvem de gás e poeira de onde foram expelidos anéis de matéria gasosa, a partir dos quais se formaram os planetas, dando lugar ao nosso sistema planetário atual.

Esta teoria permite manter a tese da origem conjunta do Sol e dos planetas, explicando como os processos físicos ocorreram e como os anéis desprendidos do núcleo central puderam atingir pontos tão distantes do centro da órbita de Netuno. A nuvem de gás girava em torno de seu centro. Depois de um certo tempo (cerca de 100 milhões de anos), essa nuvem começou a esfriar e a contrair-se, fazendo com que ela girasse ainda mais depressa.

Esta rotação criou os anéis que, mais tarde, por sua vez, se resfriaram e se contraíram, formando os planetas, os satélites, os asteróides e os cometas. Enquanto isso, o centro da nuvem se contraía, dando origem ao Sol.

Movimento Planetário

O movimento dos planetas é regido pelas três leis de Kepler, descobertas pelo astrônomo Johannes Kepler, no século XVII. São elas:

1ª lei: as órbitas dos planetas são elipses, com o Sol ocupando um dos focos.
2ª lei: o raio vetor que une o planeta ao Sol varre áreas iguais em iguais períodos de tempo, ou seja, quanto mais próximo o planeta estiver do Sol mais rápido ele caminha.
3ª lei: a razão entre o quadrado do período e o cubo do semi-eixo maior da órbita dos planetas é constante.

Esta última lei é um caso particular da lei da gravitação universal de Newton.

Principais Características dos Astros do Sistema Solar

Sol

O Sol é uma estrela amarela, com uma idade estimada de cinco bilhões de anos. Como as outras estrelas, sua forma é esférica (achatada nos pólos) e é composto de gases, principalmente hidrogênio (75%) e hélio (23%). Todos os outros elementos encontrados aqui na Terra estão presentes, também, no Sol (como ouro, carbono, etc.), completando a composição química dele.

Seu tamanho é imenso se o compararmos aos planetas. Em seu interior poderíamos colocar mais de um milhão de planetas Terra.

A luz que é produzida em seu núcleo leva cerca de um milhão de anos para deixá-lo, pois não sai diretamente, encontrando obstáculos até a superfície. Uma vez na superfície, a luz leva somente 8 minutos e 20 segundos para chegar à Terra, percorrendo, aproximadamente, os 150 milhões de quilômetros que separam nosso planeta do Sol.

A superfície solar é turbulenta, apresentando com freqüência manchas solares, labaredas, jatos de matéria e outros violentos fenômenos provocados pelos fortes campos magnéticos locais.

Em seu núcleo, as temperaturas chegam a 15 milhões de graus, permitindo que ocorram reações nucleares que são a fonte de energia do Sol. Nestas reações, quatro núcleos de hidrogênio são transformados em um núcleo de hélio. Entretanto, a massa de um núcleo de hélio é menor que a de quatro núcleos de hidrogênio. Esta diferença de massa é totalmente convertida em energia. A cada segundo o Sol perde quatro milhões de toneladas de matéria transformada em energia.

Mercúrio

Por ser o planeta mais próximo do Sol é o mais rápido. Os antigos lhe deram o nome em homenagem ao mensageiro dos deuses.

Apesar de ser o planeta mais próximo do Sol, não é o mais quente. Devido à ausência de atmosfera, não há distribuição de calor. Assim, os dias em Mercúrio apresentam temperaturas elevadíssimas, em torno de 400ºC, enquanto nas noites as temperaturas caem a extremos de -170ºC.

Mercúrio é menor que Ganimedes e Titã, satélites de Júpiter e Saturno, respectivamente, mas com massa maior que a deles. Apesar do tamanho, só não é mais denso que a Terra. No seu interior há um núcleo de ferro com diâmetro aproximado de 3.600km.

Este planeta foi explorado pela nave espacial Mariner 10, em 1974. As fotografias então obtidas, mapeando 45% do planeta, mostraram ser a superfície de Mercúrio muito semelhante à da Lua, toda coberta por crateras. Além disso, não possui atmosfera, nem placas tectônicas.

É um planeta de difícil observação por estar sempre muito próximo do Sol.

Vênus

Vênus recebeu o nome da deusa da beleza e do amor, e é também conhecido como Estrela D´Alva, estrela Vespertina ou, ainda, estrela Matutina. É quase do tamanho da Terra e foi descrito muitas vezes como planeta gêmeo da Terra, embora, como veremos mais adiante, o tamanho é uma das poucas características que os dois planetas têm em comum.

Sua órbita é a mais circular do Sistema Solar. É o astro mais brilhante, depois do Sol e da Lua, e facilmente se observa suas fases (Galileu observou estas fases e deu um impulso à teoria heliocêntrica de Copérnico).

Apesar de sua proximidade da Terra, a superfície deste planeta permaneceu misteriosa por muito tempo, obscurecida pelas densas nuvens, até que as sondas espaciais pudessem ser enviadas.

Este é o planeta mais quente do Sistema Solar. Nele ocorre o chamado efeito estufa, que mantém a temperatura deste planeta em torno de 470ºC. Este efeito pode ser descrito da seguinte maneira: o calor proveniente do Sol atravessa as nuvens, chega até a superfície de Vênus, é refletido e, quando vai escapar do planeta, encontra novamente as nuvens que formam uma barreira, aquecendo-o. Na superfície de Vênus, metais como o chumbo estariam na forma líquida.

A pressão atmosférica é imensa. Um astronauta em sua superfície seria rapidamente esmagado, pois sentiria uma pressão equivalente à sentida por um mergulhador a 1.000 metros de profundidade no oceano.

Possui um núcleo de ferro com cerca de 600km de diâmetro, coberto por um manto rochoso de matéria derretida.

Uma de suas características marcantes é o movimento retrógrado, ou seja, contrário dos demais (lá o Sol nasce a oeste e se põe a leste).

A primeira sonda a visitá-lo foi a Mariner 2, em 1962. Mais de 20 sondas já estiveram lá até hoje. A nave Magalhães (lançada em 1989) mapeou 98% da superfície de Vênus com uma resolução superior a 300 metros, através de radar.

Terra

Nosso planeta, uma pequena esfera azul no espaço, é o terceiro em distância do Sol, o quinto em tamanho e o único onde sabemos existir vida. Recebeu este nome em homenagem a Gaia, mãe dos primeiros deuses.

A Terra apresenta dois principais movimentos: rotação (gira em torno de si em 24 hs) e revolução (gira em torno do Sol em um ano). Seu eixo de rotação possui inclinação de 23,5º em relação ao plano de sua órbita e, por este motivo, observamos o fenômeno das estações do ano.

A maior parte de nosso planeta é coberta de água (3/4). O restante forma os continentes e ilhas.

Nossa atmosfera é composta de várias camadas e uma delas tem chamado muita atenção: a camada de ozônio. O ozônio filtra os raios provenientes do Sol, nos protegendo de grande parte do ultravioleta e do infravermelho. Gases utilizados em ar condicionado e geladeira, além da poluição, estão destruindo esta camada, o que pode dificultar a sobrevivência do ser humano.

Lua

Recebeu o nome de Selene, a irmã de Hélios (Sol). A luz leva pouco mais de um segundo para percorrer a distância que nos separa de nosso satélite natural (384.000km, em média).

A Lua gira em torno de seu eixo ao mesmo tempo em que dá uma volta completa ao redor da Terra, de modo a nos mostrar sempre a mesma face.

Qualquer pequeno telescópio nos revela uma grande variedade de detalhes da superfície lunar: crateras, altas montanhas e imensas e escuras planícies conhecidas impropriamente como mares. Existem cerca de 300.000 crateras de vários tamanhos. Elas foram provocadas pela queda de fragmentos de rocha que vagueiam pelo espaço a grandes velocidades: os meteoróides.

Em julho de 1969, os astronautas Neil Armstrong e Edwin Aldrin desceram pela primeira vez na superfície lunar. Seguiram-se mais cinco missões com sucesso ao satélite, totalizando 12 homens a pisá-la. Muito material da superfície foi analisado, inclusive trazido para a Terra.

Na superfície da Lua, a baixa gravidade, 1/6 da força gravitacional da Terra, faz com que os movimentos pareçam em câmara lenta. Um astronauta de 72kg se sentiria como se tivesse apenas 12kg.

A sonda Clementine mapeou toda a superfície lunar com grandes detalhes, em 1994. Já a sonda Lunar Prospector, lançada em 1998, após concluir seus estudos em órbita de nosso satélite, foi ao encontro de uma cratera no pólo sul da Lua, onde se suspeitava existir água em forma de gelo. Porém nenhum vestígio de água foi encontrado.
A Lua projetada na Terra caberia em nosso país, o Brasil.

Marte

É o deus da guerra.

A primeira missão com sucesso a Marte foi a espaçonave Mariner 4, em 1965, depois a Viking I, em 1976, seguida pela Viking II, no mesmo ano, quando foram tiradas fotos inéditas de sua superfície.

O solo marciano é avermelhado, devido à presença de óxido de ferro, mais conhecido como ferrugem. É coberto por uma tênue atmosfera com tempestades de poeira que chegam a cobrir o planeta por vários meses e, à semelhança da Terra, possui calotas polares, formadas de gelo seco, que avançam e se retraem conforme as estações do ano. A temperatura varia entre -123ºC e 22ºC. Seu tamanho não é muito grande: a área dos continentes da Terra cobriria a superfície de Marte.

A existência de formações geológicas semelhantes a vales de rios secos e canyons é forte evidência de que, no passado, havia água líquida com mares e rios de águas correntes na superfície marciana. Além de fotos, as sondas fizeram experiências com material coletado do solo em busca de vida microscópica, mas nada foi encontrado.
Além de vales, canyons, calotas polares e crateras, o planeta vermelho também apresenta formações vulcânicas. Seu maior vulcão – Monte Olympus – se eleva a uma altura três vezes maior que a do Monte Everest, a mais alta montanha da Terra.
Acredita-se que alguns meteoritos tenham se originado em Marte.

Na década de 90, três importantes sondas espaciais estudaram o planeta Marte: Mars Polar Lander, que se perdeu ao pousar no planeta; Mars Pathfinder, uma das mais bem sucedidas missões, que levou um robô (Sojouner) para pesquisar sua superfície; Mars Global Surveyor, que chegou a Marte em 1997.

Asteróides

Entre Marte e Júpiter há uma faixa ocupada por fragmentos de rocha de dimensões e formas variadas que orbitam o Sol. Estes objetos são os asteróides.

Conhecemos mais de 600 asteróides. Apesar da quantidade, a massa total é inferior à da Lua.

Esses objetos já foram alvo de missões espaciais. A nave NEAR (sigla em inglês para Encontro de Asteróides Próximos à Terra) alcançou o asteróide 433 Eros em janeiro de 1999. Os dados coletados estão sendo analisados e as primeiras imagens já estão sendo publicadas.

Júpiter

Este é o maior planeta do Sistema Solar; por isso recebeu o nome do deus supremo. Sua massa corresponde a pouco mais que duas vezes e meia a massa de todos os outros planetas reunidos.

Assim como Saturno, Urano e Netuno, trata-se de um planeta gigante e gasoso. Acredita-se que Júpiter tenha um núcleo rochoso envolto por camadas sólidas de hidrogênio metálico e uma superfície de hidrogênio líquido a grande pressão.

Suas nuvens multicoloridas se distribuem em cinturões e turbulências provocadas pelos fortes ventos de sua atmosfera. Um exemplo é a Grande Mancha Vermelha, uma enorme tempestade atmosférica, semelhante a um furacão, que é observada há mais de 300 anos. Quase três planetas do tamanho da Terra enfileirados seriam necessários para cobrir a extensão desta mancha.

Júpiter possui mais de 60 luas (o recordista do Sistema Solar), sendo as quatro maiores conhecidas como luas galileanas – Io, Europa, Ganimedes e Calixto. A mais singular delas é Io, onde vários vulcões em atividade foram registrados pela primeira vez pelas naves Voyager 1 e 2.

Júpiter e suas principais luas foi alvo de estudo da sonda Galileo, que, em 30/12/2000, esteve a apenas 11 milhões de quilômetros daquele planeta.

Saturno

Deus do tempo e filho de Urano (Céu) e Gaia (Terra).

Saturno é famoso pelo seu sistema de anéis, que pode ser observado até mesmo através de um modesto telescópio terrestre. Os anéis são compostos por milhares de pedaços de rocha e gelo em órbita do planeta, com centímetros até metros de diâmetro. Eles se estendem, de uma ponta a outra, por mais de 250.000km e seu diâmetro não ultrapassa 1km. Provavelmente são restos de um satélite natural que, por se aproximar demais do planeta, foi despedaçado ou, então, material de um satélite que nem chegou a se formar.

É o planeta que apresenta a menor densidade média, mais baixa, inclusive, que a densidade da água. Se pudéssemos colocá-lo na água ele flutuaria.

A atmosfera deste planeta é composta principalmente por hidrogênio e hélio. Seus ventos alcançam velocidades acima de 1.600km/h. Seu núcleo é rochoso (como Júpiter).

A primeira sonda a visitá-lo foi a Pioneer 11, em 1979, e depois as Voyager 1 e 2, na década de oitenta. Lançada em 1997, a espaçonave Cassini tem como finalidade estudar o planeta Saturno e suas principais luas, como Titã.

Saturno possui diversos satélites, destacando-se Titã, a única lua com uma densa atmosfera no Sistema Solar. Esta atmosfera chama a atenção por apresentar características semelhantes à da Terra no período de sua formação.

Urano

Deus do céu. Urano foi o primeiro planeta a ser descoberto por telescópio, em 1781.

Um detalhe curioso sobre este planeta é a grande inclinação de seu plano equatorial em relação ao plano de sua órbita. Esta grande obliqüidade gera movimentos aparentes do Sol no céu uraniano muito peculiares. Assim, os pólos ficam voltados para o Sol em parte de seu movimento de translação.

Seu encontro com a espaçonave Voyager 2 (única a visitá-lo), em 1986, revelou 10 novos satélites, além dos cinco já conhecidos. Essa nave também confirmou a presença de anéis (descobertos em 1972), à semelhança dos outros planetas gasosos e gigantes, com pedras de até 10 metros de diâmetro.

Apresenta um núcleo de gelo e rocha com massa inferior à dos núcleos dos planetas Júpiter e Saturno. Sua cor azulada deve-se à presença de metano em sua atmosfera.
Recentemente foram descobertos novos satélites totalizando 21.

Netuno

Deus dos mares.
Netuno é o menor dos quatro planetas gasosos, mas sua massa é maior que a de Urano. Foi descoberto em 1846, muito tempo após sua previsão, através das perturbações na órbita de Urano. Apresenta grandes tempestades atmosféricas.
A espaçonave Voyager 2, em 1989, fotografou em Tritão um de seus satélites, o que aparenta serem gêiseres de nitrogênio. Detectou, também, a presença de anéis muito escuros.

Seu núcleo se assemelha ao de Urano, formado por gelo e rocha, e com menos massa que os de Júpiter e de Saturno. O metano em sua atmosfera absorve a luz vermelha e dá uma tonalidade azulada. Os ventos atingem 2.000km/h. Como os demais planetas gigantes e gasosos, irradia mais calor do que recebe do Sol.

O telescópio espacial Hubble observou uma grande mancha escura no planeta, e não mais a mancha detectada pela Voyager 2.

Planetas Anões

O dia 24 de agosto de 2006 é um marco na história da Astronomia. Há alguns anos, como conseqüência do aperfeiçoamento das técnicas observacionais, vários corpos pequenos e distantes, semelhantes a Plutão, foram descobertos no Sistema Solar. Esses novos corpos foram classificados como Objetos Transnetunianos, por se localizarem após a órbita de Netuno. Dentre os transnetunianos estão corpos pequenos, como cometas e asteróides, e outros um pouco maiores, semelhantes a Plutão.

A tendência é descobrirmos cada vez mais objetos nessa região que deve ser povoada por milhares de corpos. O fato de alguns transnetunianos terem tamanhos semelhantes ao de Plutão, levantou a questão de esses corpos serem também considerados planetas. A discussão se acirrou após a descoberta do transnetuniano 2003UB 313, batizado como Éris, que se mostrou ainda maior que Plutão.

É interessante lembrar que a partir do Sol temos os chamados planetas rochosos – Mercúrio, Vênus, Terra e Marte, seguidos pelos planetas chamados gigantes gasosos – Júpiter, Saturno, Urano e Netuno. Depois de Netuno, conhecíamos também Plutão, um corpo rochoso e pequeno, localizado na região do Sistema Solar dominada por planetas gigantes e gasosos.

Mas então foram observados os outros objetos semelhantes a Plutão no Sistema Solar. E o que fazer? Classificar esses objetos também como planeta, ou criar uma nova classificação para Plutão e seus companheiros semelhantes? Essa discussão surgiu porque não havia uma definição clara de planeta.

A discussão perdurou durante algum tempo no meio astronômico. Alguns, incluindo os descobridores de 2003 UB 313, defendiam aumentar o número de planetas do Sistema Solar. Nesse caso, o número de planetas tenderia sempre a aumentar, uma vez que sempre poderíamos descobrir mais objetos pequenos e distantes, como Plutão. Outros defendiam a mudança da categoria de Plutão, que deveria ser classificado de alguma outra maneira, junto com os transnetunianos semelhantes a ele.

A questão só poderia ser resolvida pela União Astronômica Internacional (IAU – sigla em inglês de International Astronomical Union ), uma entidade que, entre outras atribuições, faz a regulamentação de nomenclaturas, classificações e definições utilizadas na Astronomia.

No dia 24 de agosto de 2006, a União Astronômica Internacional publicou resoluções criando duas novas categorias de objetos do Sistema Solar: Planetas e Planetas Anões . Plutão passa a ser planeta anão, e os outros planetas do Sistema Solar, planetas.

Segue abaixo tradução de parte das resoluções publicadas pela IAU, a respeito dessa mudança de classificação de alguns corpos do Sistema Solar.

Resolução da IAU: Definição de um Planeta no Sistema Solar

Observações contemporâneas estão mudando nosso entendimento de sistemas planetários, e é importante que nossa nomenclatura para os objetos reflita nosso entendimento corrente. Isso se aplica, em particular, para a designação ‘planetas’. A palavra ‘planeta’ originalmente descrevia ‘viajantes’, que eram conhecidos apenas como luzes que se deslocavam no céu. Descobertas recentes nos levam a criar uma nova definição, o que pode ser feito utilizando-se informações científicas disponíveis.

RESOLUÇÃO 5A.

A IAU resolve que planetas e outros corpos no nosso Sistema Solar, exceto satélites, são definidos em três categorias distintas da seguinte maneira:

(1) Um planeta¹ é um corpo celeste que (a) está em órbita ao redor do Sol, (b) tem suficiente massa para que sua própria gravidade se sobreponha a forças de corpo rígido de maneira que ele mantenha uma forma (aproximadamente redonda) em equilíbrio hidrostático, e (c) tem a vizinhança em torno de sua órbita livre.

(2) Um planeta anão é um corpo celeste que (a) está em órbita ao redor do Sol, (b) tem suficiente massa para que sua própria gravidade se sobreponha a forças de corpo rígido de maneira que ele mantenha uma forma² (aproximadamente redonda) em equilíbrio hidrostático, (c) não tem a vizinhança em torno de sua órbita livre, e (d) não é um satélite.

(3) Todos os outros objetos³ , exceto satélites, orbitando o Sol serão referidos coletivamente como “Pequenos Corpos do Sistema Solar”.

1 Os oito planetas são: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.

2 Um processo da IAU será estabelecido para designar objetos incertos na categoria de planeta anão ou outras categorias.

3 Esses atualmente incluem a maioria dos asteróides do Sistema Solar, a maioria dos Objetos Transnetunianos (TNOs), cometas e outros corpos pequenos.

RESOLUÇÃO DA IAU: Plutão

RESOLUÇÃO 6A.

A IAU adiante resolve:

Plutão é um planeta anão pela definição acima e é reconhecido como o protótipo de uma nova categoria de objetos transnetunianos.

RESOLUÇÃO 6B.

1 – Em 14 de setembro de 2006, a IAU retira o nome 2003 UB313, e esse objeto passa a se chamar Éris, deusa grega da discórdia e da contenda. Bom nome para um astro que gerou divisão na comunidade astronômica, não acha? Seu satélite fica batizado de Disnomia.

Plutão

Deus dos infernos. Descoberto em 1930, ainda não foi alvo de visita de sondas espaciais.

Plutão é menor que a nossa Lua (além de Io, Europa, Ganimedes, Calixto, Titã e Tritão). Até agora não foi visitado por nenhuma espaçonave.

Plutão leva 248 anos para completar uma volta ao redor do Sol. Fica durante 20 anos mais próximo do Sol do que Netuno (última vez de 1979 a 1999), por causa da excentricidade de sua órbita. Apesar disso, não há a possibilidade destes corpos celestes se colidirem.

Devido à sua distância, nem o telescópio espacial Hubble conseguiu definir até agora sua superfície. É composto de 80% de rocha e 10% de gelo de água, aproximadamente.

Tabela do Sistema Solar

Cometas

Existem registros destes objetos desde 240 a.C. pelos chineses (cometa de Halley). Estavam sempre associados a guerras, enchentes, pestes, destruição de impérios, etc.
Mais de 800 já foram catalogados e suas órbitas calculadas, sendo 184 periódicos (órbitas menores que 200 anos).

Com poucos quilômetros de extensão, os cometas são pequenos corpos viajando ao redor do Sol em longas órbitas elípticas.

O núcleo, de gelo e gás com pouca poeira, é a única parte substancial sólida do cometa. À medida que o núcleo cometário se move para regiões mais internas do Sistema Solar, a luz do Sol o aquece e o gelo em sua superfície se transforma em vapor, formando a cabeleira ou coma. Uma nuvem de hidrogênio muito rarefeita com milhões de quilômetros circunda o núcleo. O gás da cabeleira, juntamente com partículas de poeira, é empurrado pela pressão de radiação do Sol e pelo vento solar, formando então duas caudas, de poeira e de íons, respectivamente, podendo se estender por mais de uma unidade astronômica (1 u.a. = distância média Terra-Sol = 150.000.000km).

Os cometas geralmente começam a ser vistos quando estão a uma distância similar à de Júpiter, começando a apresentar uma cauda. Em 1987, a sonda Gioto, da Agência Espacial Européia, chegou a 540 quilômetros do cometa Halley, desvendando alguns dos mistérios destes objetos.

Suas órbitas originais estão além de Plutão. Após passarem próximo do Sol ou de algum planeta, estas órbitas podem se alterar, eventualmente, até se chocar com a nossa estrela ou um planeta.

Muitos cometas são descobertos por astrônomos amadores. Duas regiões do Sistema Solar são dominadas pelos cometas. A primeira é conhecida como Cinturão de Kuiper. Este se estende além da órbita de Netuno, indo até, aproximadamente, umas 100 u.a. (Plutão está a cerca de 40 u.a.). Acredita-se que os cometas de curto período se originem nesta região. A perturbação dos planetas gigantes lança estes objetos em direção ao Sol. A segunda região é a Nuvem de Oort (prevista em 1950), com mais de um trilhão de cometas, se estendendo de 30.000 u.a. a até um ano-luz, aproximadamente (um ano-luz = 9,5 trilhões de quilômetros).

Meteoróides, Meteoros e Meteoritos

Girando ao redor do Sol existe um número incontável de pedaços de rochas, cujos tamanhos variam de milímetros a dezenas de metros: são os meteoróides.

Eventualmente colidem com outro astro, podendo produzir crateras. Ao ingressarem na atmosfera terrestre com grandes velocidades, essas rochas são volatizadas pelo atrito tornando-se momentaneamente luminosas, sendo então chamadas meteoros. Se não forem totalmente desintegradas elas atingem o solo e aí são denominadas meteoritos. Um grande número de meteoróides penetra a atmosfera a cada dia.

A maioria destes detritos celestes são provenientes de asteróides e poucos vêm de cometas, da Lua e de Marte.

Como exemplo de crateras produzidas pela queda de meteoritos temos a cratera do Meteoro, nos Estados Unidos, com 1,2km de diâmetro e 200m de profundidade. O objeto que a originou caiu há 50 mil anos.

No Brasil temos uma cratera na serra da Cangalha (Maranhão), visível de avião. O mais famoso meteorito brasileiro, o Bedengó, está em exposição no Museu Nacional, na Quinta da Boavista, e pesa cerca de cinco toneladas.

A queda de um meteorito no México formou uma cratera com mais de 100km de diâmetro, responsável, pelo menos em grande parte, pela extinção dos dinossauros há 65 milhões de anos.

A presença de vegetação, vento e chuva dificulta a visualização e a permanência de crateras. Em planetas e satélites, onde não existe atmosfera, as crateras produzidas permanecem por muito tempo (milhares de anos), pois não há nenhum fenômeno local para destruí-las.

Novos Planetas

Há muito tempo o homem tem procurado planetas fora do Sistema Solar. Nos últimos anos, conseguimos identificar os primeiros astros do gênero. Até o momento (junho de 2007), 236 planetas já foram descobertos, tendo na sua maioria o tamanho aproximado de Júpiter. Recentemente foi descoberto um planeta muito semelhante à Terra. Ele possui cerca de 5 vezes a massa da Terra, seu tamanho é aproximadamente 50% maior, e apresenta temperatura e distância, à estrela à qual gira, que permitem a presença de água líquida. Esses fatos nos levam a cogitar a possibilidades de vida no planeta.

Todos foram descobertos indiretamente, ou seja, não foram vistos através de telescópios. Isso porque são bastante pequenos em comparação com a estrela que orbitam e não possuem luz própria, uma das características dos planetas.

A técnica utilizada para se detectar objetos tão pequenos e tão distantes consiste em observar desvios nos espectros (a impressão digital das estrelas) da estrela observada e, assim, determinar a massa do objeto que a orbita. Este desvio é conhecido como efeito Doppler, o mesmo de uma sirene de ambulância, quando ouvimos barulhos diferentes quando ela se aproxima e se afasta.

Esses planetas confirmam a suspeita dos astrônomos de que bilhões de planetas devem existir em nossa galáxia. É questão de tempo para conhecermos milhares deles.

Atividade: Determinação da Distância entre a Terra e a Lua

Sabendo-se o diâmetro da Lua em quilômetros, é fácil obter-se a sua distância. Para isso, é só determinar o ângulo compreendido pelo limbo lunar.

Procure uma janela que esteja voltada, aproximadamente, ou para o nascente ou para o poente. Numa noite próxima à Lua cheia, cole duas tiras de esparadrapo ou fita isolante paralelas, separadas por 30mm aproximadamente, no vidro da janela. A observação deverá ser feita pouco depois do “nascimento” da Lua, se a janela estiver voltada para o nascente, ou pouco depois antes do seu ocaso, se a janela estiver voltada para o poente.

Agora, com apenas um olho aberto, procure ficar a uma distância tal que a Lua “toque” a parte interna das fitas. Feito isto, marque a posição em que seu olho se encontra com o auxílio da quina de livros empilhados até uma altura conveniente. Meça a distância com a maior precisão possível dos livros até as fitas, assim como a separação da parte interna das fitas.

A distância da Terra à Lua, em quilômetros, é obtida pela relação:

LF / distância da Lua = SF / diâmetro da Lua
SF = separação entre as fitas
LF = distância entre os livros até as fitas
diâmetro da Lua = 3.740km

Atividade: Determinação do Diâmetro do Sol
Qual será o diâmetro do Sol em quilômetros? A experiência é semelhante à anterior.
O nosso astro é muito brilhante e vamos tirar proveito disto para efetuarmos a experiência. Usaremos o princípio da “câmara escura”.

Use um pequeno espelho coberto por um papel preto em que foi previamente feito um furo de aproximadamente 4mm. Agora, projete a imagem refletida do Sol a uns 5 ou 7 metros de distância em um papel branco fixo em uma parede. Meça agora a distância precisa do espelho até a imagem, assim como o diâmetro da mesma. Será necessário apoiar o espelho em algum lugar para se obter uma imagem “imóvel”, por pelo menos alguns segundos, para ser medida.

O diâmetro do Sol, em quilômetros, é dado por: Diâmetro da imagem / Diâmetro do Sol = Distância da imagem ao furo / Distância do Sol à Terra.

Obs.: Alguns céticos duvidam de que esta seja a imagem do Sol. Argumentam também que a imagem é circular porque o furo tem esta forma. Tente fazer furos em forma de triângulos ou quadrados, com as dimensões já especificadas, e terá imagens sempre circulares. O furo circular oferece resultados melhores.

Atividade: Representação do Sistema Solar

Nesta atividade vamos representar a proporção dos tamanhos do Sol e dos planetas, além das distâncias dos planetas ao Sol. É interessante mostrar isso às crianças. Tente fazer num jardim ou numa praça essa representação.

a) Modelos dos Tamanhos
Se o Sol tiver um metro de diâmetro, os planetas terão os seguintes tamanhos:

 
b) Modelos das Distâncias
Suponhamos, agora, que a distância Sol-Terra seja de um metro; as distâncias dos outros planetas e o tempo necessário para um avião chegar ao Sol viajando a 1.000 quilômetros por hora seriam:


http://www.itexam-online.com/
http://www.passexamvce.com/
http://www.itcert-online.com/
n10-006 practice test
220-901 practice test
adm 201 practice exam
70-532
640-916 dumps pdf
300-135 vce
70-346 study guide pdf
70-534 book
200-105 icnd2 pdf
300-070 vce
300-209 dumps
300-101 dumps
70-483
200-355 wifund
210-065 pdf
840-425 exam pdf
70-532 exam preparation
220-901 dumps