Equações de Maxwell
Estas equações relacionam o campo elétrico () e o campo magnético (), juntamente com suas variações no espaço (representadas pelo operador diferencial nabla – ) e no tempo . Nas equações de Maxwell também aparecem a corrente (), a densidade de cargas elétricas () e e duas grandezas inerentes ao meio em que os campos elétrico e magnético se propagam: a permissividade () e a permeabilidade (); no caso do vácuo, aparece o subscrito 0.
1. Lei de Gauss para o campo elétrico
2. Lei de Faraday-Henry
3. Lei de Gauss para o campo magnético
4. Lei de Ampère-Maxwellv
Uma manipulação habilidosa deste conjunto de equações, bastante simplificadas se considerarmos regiões do espaço sem cargas e correntes, resulta em um par de outras equações que são prontamente reconhecidas como equações de ondas:
A teoria ondulatória nos diz que a velocidade de propagação de uma onda é dada pela raiz quadrada do inverso da constante que multiplica o termo temporal de sua equação. Assim, a onda elétrica (e também a magnética) se propaga no vácuo com uma velocidade de
(É muito importante frisar que este valor é calculado, e não medido. Os valores numéricos de
e de são obtidos, e só então é calculada a velocidade da luz).