O Pêndulo de Focault

Se perguntassem a um grupo de pessoas escolhido ao acaso quais são os movimentos da Terra, existe uma grande probabilidade que elas respondam, independentemente de seu grau de instrução, que são dois: rotação e translação (vale ressaltar que esta não é a resposta correta, mas sim a mais comum). Se, em seguida, for pedida uma prova desses movimentos, um número agora reduzido de pessoas se prontificará a dizer que para o primeiro pode-se usar a sucessão de dias e noites, e para o segundo, a existência do período definido como “ano”. Alguns, mais raramente, mencionam a mudança de posição dos astros no céu ao longo dos dias e das noites para justificar a rotação da Terra, e a presença das estações do ano que realmente podem ser explicadas pelo movimento de revolução quando associado à inclinação do eixo de rotação terrestre.

Continuando a atividade, ao se concentrar especificamente no movimento de rotação da Terra, e sugerir a realização de um experimento mental com o grupo em questão, pergunta-se, nesse momento, como eles fariam para inferir esse movimento se o planeta que habitam tivesse uma camada atmosférica bem maior e mais espessa que a da Terra, de forma que não fosse possível contemplar qualquer objeto celeste, e assim evidenciar seus deslocamentos ao longo do tempo (caberia até usar o exemplo do planeta Vênus, devido às suas características semelhantes às descritas anteriormente). Como poderiam fazer para comprovar, nesse caso, que o planeta em que eles se encontram, realmente, gira em torno de seu eixo, num movimento de rotação? Nesse momento, as pessoas se entreolham em silêncio, e é possível, por alguns instantes, imaginar o que se passava na cabeça dos habitantes da Terra antes de 1851.

Esse ano representa um marco na História da Ciência, pois foi quando ocorreu a quebra de um paradigma que atormentou várias gerações de cientistas, que sofreram mental e, por vezes, fisicamente na intenção de mostrar, de maneira definitiva, que a Terra girava. O autor dessa brilhante demonstração foi o cientista “amador” francês Jean Bernard Léon Foucault (1819-1868). Tal prova consistia em um pêndulo simples posto a oscilar em um plano vertical, o qual gira lentamente com o passar do tempo no sentido contrário ao do movimento de rotação da Terra. É importantíssimo, contudo, destacar que, apesar da simplicidade dessa experiência, são necessários alguns cuidados especiais para que ela seja bem-sucedida. A forma como o fio é preso, ou até mesmo como o peso é solto inicialmente são detalhes fundamentais para que a demonstração transcorra perfeitamente.

No entanto, talvez a questão mais complexa desse intrigante experimento seja a compreensão do que vem a ser esse plano de oscilação do pêndulo. Para visualizar claramente esse conceito, vale recorrer a um recurso utilizado pelo próprio Foucault quando realizou essa experiência no Panthéon de Paris, em março de 1851. Na parte inferior da bola do pêndulo foi anexada uma espécie de agulha, que deixava um rastro linear na areia molhada espalhada exatamente abaixo de todo o aparato. Ao cumprir a trajetória em sua primeira oscilação, a linha traçada pelo pêndulo na areia define o plano em questão, e se uma parede imaginária fosse suspensa a partir desse risco, ela representaria esse plano oscilatório. Com o passar do tempo, a agulha começa a mudar a direção das marcações na areia, o que indica, indubitavelmente, que a Terra gira.

E por que isso acontece? A explicação matemática definitiva para esse fenômeno não é muito simples, e não foi dada por Foucault. Sua solução foi totalmente empírica, apesar de naquela época já existir a base matemática necessária para explicá-la. Ela foi desenvolvida por Gaspard-Gustave Coriolis (1792 1843), em 1835. Curiosamente, ainda em 1851 ela não era conhecida pelos cientistas franceses, o que retardou a dedução do que hoje é chamada de lei do seno (por relacionar o período que o plano do pêndulo leva para dar uma volta completa com o seno da latitude em que o experimento é realizado).

A grande contribuição de Coriolis foi enunciar o que atualmente se conhece como força de Coriolis. Essa força age em corpos que se movem em sistemas em rotação (que é o caso de um pêndulo oscilando na Terra). Sua principal característica, no caso do pêndulo de Foucault, é ser a responsável direta pelo movimento do plano de oscilação. E é graças a ela que no hemisfério sul o desvio sofrido é no sentido anti-horário, e horário no hemisfério norte. Para uma melhor visualização de como essa força atua, um bom exemplo prático pode ser usado: uma pessoa se movendo em um carrossel. Supondo-se que ela parta do centro para a borda, e que o carrossel esteja girando no sentido horário, essa pessoa sentirá uma força impelindo-a para a direita. Obviamente, essa força está relacionada ao sentido do movimento da pessoa (se vai do centro para a borda, ou vice-versa), e também com o sentido em que o carrossel gira.

Atualmente, pode-se encontrar pêndulos de Foucault em diversos museus e edificações ao redor do mundo, mostrando todo o seu valor histórico e científico, mas, principalmente, transmitindo uma noção primordial que nem sempre as pessoas captam ao se deparar com tal dispositivo: aconteça o que acontecer, a Terra continua em seu movimento incessante ao redor de seu eixo rotacional. Daí a importância dessa ferramenta para a difusão da ciência.