Usamos cookies em nosso site para lhe dar a experiência mais relevante, lembrando suas preferências e repetindo visitas. Ao clicar em "Aceitar tudo", você concorda com o uso de TODOS os cookies. No entanto, você pode visitar "Configurações de cookies" para fornecer um consentimento controlado.

Visão geral da privacidade

Este site usa cookies para melhorar sua experiência enquanto você navega pelo site. Destes, os cookies categorizados conforme necessário são armazenados no seu navegador, pois são essenciais para o funcionamento das funcionalidades básicas do site. T...

Sempre ativado

Os cookies necessários são absolutamente essenciais para que o site funcione corretamente. Esta categoria inclui apenas cookies que garantem funcionalidades básicas e recursos de segurança do site. Esses cookies não armazenam nenhuma informação pessoal.

Quaisquer cookies que podem não ser particularmente necessários para o funcionamento do site e são usados especificamente para coletar dados pessoais do usuário através de análises, anúncios, outros conteúdos incorporados são denominados como cookies não necessários. É obrigatório obter o consentimento do usuário antes de executar esses cookies em seu site.

Categories
Coluna do Astrônomo

O Sistema Solar

 

Ao contemplarmos o céu noturno, notamos que existem alguns astros que não cintilam como as estrelas e se encontram próximos à eclíptica – o caminho que vemos o Sol percorrer durante o ano. Em uma observação mais demorada, iremos notar, com o passar dos dias, que eles se deslocam em relação às estrelas. A estes astros damos o nome de planetas.

Desde a Antiguidade são conhecidos cinco planetas (são vistos à vista desarmada): Mercúrio, Vênus, Marte, Júpiter e Saturno. Posteriormente foram acrescentados mais três planetas (estes só vistos com o auxílio de telescópios): Urano, Netuno e Plutão (este último recebeu uma nova classificação a partir de 2006 – ver mais detalhes mais adiante). A Terra completa a lista destes “astros errantes”.

O movimento aparente dos planetas e das estrelas no céu levou o homem antigo a pensar que a Terra era o centro do Universo. Foram então elaborados modelos que explicavam a “harmonia” da esfera celeste. O mais influente desses modelos ficou conhecido como Ptolomaico, por ter sido idealizado por Ptolomeu, no século II depois de Cristo.

Esse modelo parecia explicar bem o Universo até serem feitas observações mais apuradas no século XV, quando o astrônomo polonês Nicolau Copérnico “transferiu” o centro para o Sol e tornou a Terra apenas mais um planeta a girar em torno deste astro.

Hoje sabemos que também o Sol não está no centro do Universo, ele é apenas mais uma entre as 200 bilhões de estrelas, aproximadamente, que giram ao redor do centro de nossa galáxia, a Via Láctea. Esta por sua vez também não está no centro do Universo.

Origem do Sistema Solar

A teoria mais aceita, atualmente, foi elaborada em 1948 por Fred Hoyle e Hannes Alfren. Supõe que o Sistema Solar teve origem numa grande nuvem de gás e poeira de onde foram expelidos anéis de matéria gasosa, a partir dos quais se formaram os planetas, dando lugar ao nosso sistema planetário atual.

Esta teoria permite manter a tese da origem conjunta do Sol e dos planetas, explicando como os processos físicos ocorreram e como os anéis desprendidos do núcleo central puderam atingir pontos tão distantes do centro da órbita de Netuno. A nuvem de gás girava em torno de seu centro. Depois de um certo tempo (cerca de 100 milhões de anos), essa nuvem começou a esfriar e a contrair-se, fazendo com que ela girasse ainda mais depressa.

Esta rotação criou os anéis que, mais tarde, por sua vez, se resfriaram e se contraíram, formando os planetas, os satélites, os asteróides e os cometas. Enquanto isso, o centro da nuvem se contraía, dando origem ao Sol.

Movimento Planetário

O movimento dos planetas é regido pelas três leis de Kepler, descobertas pelo astrônomo Johannes Kepler, no século XVII. São elas:

1ª lei: as órbitas dos planetas são elipses, com o Sol ocupando um dos focos.
2ª lei: o raio vetor que une o planeta ao Sol varre áreas iguais em iguais períodos de tempo, ou seja, quanto mais próximo o planeta estiver do Sol mais rápido ele caminha.
3ª lei: a razão entre o quadrado do período e o cubo do semi-eixo maior da órbita dos planetas é constante.

Esta última lei é um caso particular da lei da gravitação universal de Newton.

Principais Características dos Astros do Sistema Solar

Sol

O Sol é uma estrela amarela, com uma idade estimada de cinco bilhões de anos. Como as outras estrelas, sua forma é esférica (achatada nos pólos) e é composto de gases, principalmente hidrogênio (75%) e hélio (23%). Todos os outros elementos encontrados aqui na Terra estão presentes, também, no Sol (como ouro, carbono, etc.), completando a composição química dele.

Seu tamanho é imenso se o compararmos aos planetas. Em seu interior poderíamos colocar mais de um milhão de planetas Terra.

A luz que é produzida em seu núcleo leva cerca de um milhão de anos para deixá-lo, pois não sai diretamente, encontrando obstáculos até a superfície. Uma vez na superfície, a luz leva somente 8 minutos e 20 segundos para chegar à Terra, percorrendo, aproximadamente, os 150 milhões de quilômetros que separam nosso planeta do Sol.

A superfície solar é turbulenta, apresentando com freqüência manchas solares, labaredas, jatos de matéria e outros violentos fenômenos provocados pelos fortes campos magnéticos locais.

Em seu núcleo, as temperaturas chegam a 15 milhões de graus, permitindo que ocorram reações nucleares que são a fonte de energia do Sol. Nestas reações, quatro núcleos de hidrogênio são transformados em um núcleo de hélio. Entretanto, a massa de um núcleo de hélio é menor que a de quatro núcleos de hidrogênio. Esta diferença de massa é totalmente convertida em energia. A cada segundo o Sol perde quatro milhões de toneladas de matéria transformada em energia.

Mercúrio

Por ser o planeta mais próximo do Sol é o mais rápido. Os antigos lhe deram o nome em homenagem ao mensageiro dos deuses.

Apesar de ser o planeta mais próximo do Sol, não é o mais quente. Devido à ausência de atmosfera, não há distribuição de calor. Assim, os dias em Mercúrio apresentam temperaturas elevadíssimas, em torno de 400ºC, enquanto nas noites as temperaturas caem a extremos de -170ºC.

Mercúrio é menor que Ganimedes e Titã, satélites de Júpiter e Saturno, respectivamente, mas com massa maior que a deles. Apesar do tamanho, só não é mais denso que a Terra. No seu interior há um núcleo de ferro com diâmetro aproximado de 3.600km.

Este planeta foi explorado pela nave espacial Mariner 10, em 1974. As fotografias então obtidas, mapeando 45% do planeta, mostraram ser a superfície de Mercúrio muito semelhante à da Lua, toda coberta por crateras. Além disso, não possui atmosfera, nem placas tectônicas.

É um planeta de difícil observação por estar sempre muito próximo do Sol.

Vênus

Vênus recebeu o nome da deusa da beleza e do amor, e é também conhecido como Estrela D´Alva, estrela Vespertina ou, ainda, estrela Matutina. É quase do tamanho da Terra e foi descrito muitas vezes como planeta gêmeo da Terra, embora, como veremos mais adiante, o tamanho é uma das poucas características que os dois planetas têm em comum.

Sua órbita é a mais circular do Sistema Solar. É o astro mais brilhante, depois do Sol e da Lua, e facilmente se observa suas fases (Galileu observou estas fases e deu um impulso à teoria heliocêntrica de Copérnico).

Apesar de sua proximidade da Terra, a superfície deste planeta permaneceu misteriosa por muito tempo, obscurecida pelas densas nuvens, até que as sondas espaciais pudessem ser enviadas.

Este é o planeta mais quente do Sistema Solar. Nele ocorre o chamado efeito estufa, que mantém a temperatura deste planeta em torno de 470ºC. Este efeito pode ser descrito da seguinte maneira: o calor proveniente do Sol atravessa as nuvens, chega até a superfície de Vênus, é refletido e, quando vai escapar do planeta, encontra novamente as nuvens que formam uma barreira, aquecendo-o. Na superfície de Vênus, metais como o chumbo estariam na forma líquida.

A pressão atmosférica é imensa. Um astronauta em sua superfície seria rapidamente esmagado, pois sentiria uma pressão equivalente à sentida por um mergulhador a 1.000 metros de profundidade no oceano.

Possui um núcleo de ferro com cerca de 600km de diâmetro, coberto por um manto rochoso de matéria derretida.

Uma de suas características marcantes é o movimento retrógrado, ou seja, contrário dos demais (lá o Sol nasce a oeste e se põe a leste).

A primeira sonda a visitá-lo foi a Mariner 2, em 1962. Mais de 20 sondas já estiveram lá até hoje. A nave Magalhães (lançada em 1989) mapeou 98% da superfície de Vênus com uma resolução superior a 300 metros, através de radar.

Terra

Nosso planeta, uma pequena esfera azul no espaço, é o terceiro em distância do Sol, o quinto em tamanho e o único onde sabemos existir vida. Recebeu este nome em homenagem a Gaia, mãe dos primeiros deuses.

A Terra apresenta dois principais movimentos: rotação (gira em torno de si em 24 hs) e revolução (gira em torno do Sol em um ano). Seu eixo de rotação possui inclinação de 23,5º em relação ao plano de sua órbita e, por este motivo, observamos o fenômeno das estações do ano.

A maior parte de nosso planeta é coberta de água (3/4). O restante forma os continentes e ilhas.

Nossa atmosfera é composta de várias camadas e uma delas tem chamado muita atenção: a camada de ozônio. O ozônio filtra os raios provenientes do Sol, nos protegendo de grande parte do ultravioleta e do infravermelho. Gases utilizados em ar condicionado e geladeira, além da poluição, estão destruindo esta camada, o que pode dificultar a sobrevivência do ser humano.

Lua

Recebeu o nome de Selene, a irmã de Hélios (Sol). A luz leva pouco mais de um segundo para percorrer a distância que nos separa de nosso satélite natural (384.000km, em média).

A Lua gira em torno de seu eixo ao mesmo tempo em que dá uma volta completa ao redor da Terra, de modo a nos mostrar sempre a mesma face.

Qualquer pequeno telescópio nos revela uma grande variedade de detalhes da superfície lunar: crateras, altas montanhas e imensas e escuras planícies conhecidas impropriamente como mares. Existem cerca de 300.000 crateras de vários tamanhos. Elas foram provocadas pela queda de fragmentos de rocha que vagueiam pelo espaço a grandes velocidades: os meteoróides.

Em julho de 1969, os astronautas Neil Armstrong e Edwin Aldrin desceram pela primeira vez na superfície lunar. Seguiram-se mais cinco missões com sucesso ao satélite, totalizando 12 homens a pisá-la. Muito material da superfície foi analisado, inclusive trazido para a Terra.

Na superfície da Lua, a baixa gravidade, 1/6 da força gravitacional da Terra, faz com que os movimentos pareçam em câmara lenta. Um astronauta de 72kg se sentiria como se tivesse apenas 12kg.

A sonda Clementine mapeou toda a superfície lunar com grandes detalhes, em 1994. Já a sonda Lunar Prospector, lançada em 1998, após concluir seus estudos em órbita de nosso satélite, foi ao encontro de uma cratera no pólo sul da Lua, onde se suspeitava existir água em forma de gelo. Porém nenhum vestígio de água foi encontrado.
A Lua projetada na Terra caberia em nosso país, o Brasil.

Marte

É o deus da guerra.

A primeira missão com sucesso a Marte foi a espaçonave Mariner 4, em 1965, depois a Viking I, em 1976, seguida pela Viking II, no mesmo ano, quando foram tiradas fotos inéditas de sua superfície.

O solo marciano é avermelhado, devido à presença de óxido de ferro, mais conhecido como ferrugem. É coberto por uma tênue atmosfera com tempestades de poeira que chegam a cobrir o planeta por vários meses e, à semelhança da Terra, possui calotas polares, formadas de gelo seco, que avançam e se retraem conforme as estações do ano. A temperatura varia entre -123ºC e 22ºC. Seu tamanho não é muito grande: a área dos continentes da Terra cobriria a superfície de Marte.

A existência de formações geológicas semelhantes a vales de rios secos e canyons é forte evidência de que, no passado, havia água líquida com mares e rios de águas correntes na superfície marciana. Além de fotos, as sondas fizeram experiências com material coletado do solo em busca de vida microscópica, mas nada foi encontrado.
Além de vales, canyons, calotas polares e crateras, o planeta vermelho também apresenta formações vulcânicas. Seu maior vulcão – Monte Olympus – se eleva a uma altura três vezes maior que a do Monte Everest, a mais alta montanha da Terra.
Acredita-se que alguns meteoritos tenham se originado em Marte.

Na década de 90, três importantes sondas espaciais estudaram o planeta Marte: Mars Polar Lander, que se perdeu ao pousar no planeta; Mars Pathfinder, uma das mais bem sucedidas missões, que levou um robô (Sojouner) para pesquisar sua superfície; Mars Global Surveyor, que chegou a Marte em 1997.

Asteróides

Entre Marte e Júpiter há uma faixa ocupada por fragmentos de rocha de dimensões e formas variadas que orbitam o Sol. Estes objetos são os asteróides.

Conhecemos mais de 600 asteróides. Apesar da quantidade, a massa total é inferior à da Lua.

Esses objetos já foram alvo de missões espaciais. A nave NEAR (sigla em inglês para Encontro de Asteróides Próximos à Terra) alcançou o asteróide 433 Eros em janeiro de 1999. Os dados coletados estão sendo analisados e as primeiras imagens já estão sendo publicadas.

Júpiter

Este é o maior planeta do Sistema Solar; por isso recebeu o nome do deus supremo. Sua massa corresponde a pouco mais que duas vezes e meia a massa de todos os outros planetas reunidos.

Assim como Saturno, Urano e Netuno, trata-se de um planeta gigante e gasoso. Acredita-se que Júpiter tenha um núcleo rochoso envolto por camadas sólidas de hidrogênio metálico e uma superfície de hidrogênio líquido a grande pressão.

Suas nuvens multicoloridas se distribuem em cinturões e turbulências provocadas pelos fortes ventos de sua atmosfera. Um exemplo é a Grande Mancha Vermelha, uma enorme tempestade atmosférica, semelhante a um furacão, que é observada há mais de 300 anos. Quase três planetas do tamanho da Terra enfileirados seriam necessários para cobrir a extensão desta mancha.

Júpiter possui mais de 60 luas (o recordista do Sistema Solar), sendo as quatro maiores conhecidas como luas galileanas – Io, Europa, Ganimedes e Calixto. A mais singular delas é Io, onde vários vulcões em atividade foram registrados pela primeira vez pelas naves Voyager 1 e 2.

Júpiter e suas principais luas foi alvo de estudo da sonda Galileo, que, em 30/12/2000, esteve a apenas 11 milhões de quilômetros daquele planeta.

Saturno

Deus do tempo e filho de Urano (Céu) e Gaia (Terra).

Saturno é famoso pelo seu sistema de anéis, que pode ser observado até mesmo através de um modesto telescópio terrestre. Os anéis são compostos por milhares de pedaços de rocha e gelo em órbita do planeta, com centímetros até metros de diâmetro. Eles se estendem, de uma ponta a outra, por mais de 250.000km e seu diâmetro não ultrapassa 1km. Provavelmente são restos de um satélite natural que, por se aproximar demais do planeta, foi despedaçado ou, então, material de um satélite que nem chegou a se formar.

É o planeta que apresenta a menor densidade média, mais baixa, inclusive, que a densidade da água. Se pudéssemos colocá-lo na água ele flutuaria.

A atmosfera deste planeta é composta principalmente por hidrogênio e hélio. Seus ventos alcançam velocidades acima de 1.600km/h. Seu núcleo é rochoso (como Júpiter).

A primeira sonda a visitá-lo foi a Pioneer 11, em 1979, e depois as Voyager 1 e 2, na década de oitenta. Lançada em 1997, a espaçonave Cassini tem como finalidade estudar o planeta Saturno e suas principais luas, como Titã.

Saturno possui diversos satélites, destacando-se Titã, a única lua com uma densa atmosfera no Sistema Solar. Esta atmosfera chama a atenção por apresentar características semelhantes à da Terra no período de sua formação.

Urano

Deus do céu. Urano foi o primeiro planeta a ser descoberto por telescópio, em 1781.

Um detalhe curioso sobre este planeta é a grande inclinação de seu plano equatorial em relação ao plano de sua órbita. Esta grande obliqüidade gera movimentos aparentes do Sol no céu uraniano muito peculiares. Assim, os pólos ficam voltados para o Sol em parte de seu movimento de translação.

Seu encontro com a espaçonave Voyager 2 (única a visitá-lo), em 1986, revelou 10 novos satélites, além dos cinco já conhecidos. Essa nave também confirmou a presença de anéis (descobertos em 1972), à semelhança dos outros planetas gasosos e gigantes, com pedras de até 10 metros de diâmetro.

Apresenta um núcleo de gelo e rocha com massa inferior à dos núcleos dos planetas Júpiter e Saturno. Sua cor azulada deve-se à presença de metano em sua atmosfera.
Recentemente foram descobertos novos satélites totalizando 21.

Netuno

Deus dos mares.
Netuno é o menor dos quatro planetas gasosos, mas sua massa é maior que a de Urano. Foi descoberto em 1846, muito tempo após sua previsão, através das perturbações na órbita de Urano. Apresenta grandes tempestades atmosféricas.
A espaçonave Voyager 2, em 1989, fotografou em Tritão um de seus satélites, o que aparenta serem gêiseres de nitrogênio. Detectou, também, a presença de anéis muito escuros.

Seu núcleo se assemelha ao de Urano, formado por gelo e rocha, e com menos massa que os de Júpiter e de Saturno. O metano em sua atmosfera absorve a luz vermelha e dá uma tonalidade azulada. Os ventos atingem 2.000km/h. Como os demais planetas gigantes e gasosos, irradia mais calor do que recebe do Sol.

O telescópio espacial Hubble observou uma grande mancha escura no planeta, e não mais a mancha detectada pela Voyager 2.

Planetas Anões

O dia 24 de agosto de 2006 é um marco na história da Astronomia. Há alguns anos, como conseqüência do aperfeiçoamento das técnicas observacionais, vários corpos pequenos e distantes, semelhantes a Plutão, foram descobertos no Sistema Solar. Esses novos corpos foram classificados como Objetos Transnetunianos, por se localizarem após a órbita de Netuno. Dentre os transnetunianos estão corpos pequenos, como cometas e asteróides, e outros um pouco maiores, semelhantes a Plutão.

A tendência é descobrirmos cada vez mais objetos nessa região que deve ser povoada por milhares de corpos. O fato de alguns transnetunianos terem tamanhos semelhantes ao de Plutão, levantou a questão de esses corpos serem também considerados planetas. A discussão se acirrou após a descoberta do transnetuniano 2003UB 313, batizado como Éris, que se mostrou ainda maior que Plutão.

É interessante lembrar que a partir do Sol temos os chamados planetas rochosos – Mercúrio, Vênus, Terra e Marte, seguidos pelos planetas chamados gigantes gasosos – Júpiter, Saturno, Urano e Netuno. Depois de Netuno, conhecíamos também Plutão, um corpo rochoso e pequeno, localizado na região do Sistema Solar dominada por planetas gigantes e gasosos.

Mas então foram observados os outros objetos semelhantes a Plutão no Sistema Solar. E o que fazer? Classificar esses objetos também como planeta, ou criar uma nova classificação para Plutão e seus companheiros semelhantes? Essa discussão surgiu porque não havia uma definição clara de planeta.

A discussão perdurou durante algum tempo no meio astronômico. Alguns, incluindo os descobridores de 2003 UB 313, defendiam aumentar o número de planetas do Sistema Solar. Nesse caso, o número de planetas tenderia sempre a aumentar, uma vez que sempre poderíamos descobrir mais objetos pequenos e distantes, como Plutão. Outros defendiam a mudança da categoria de Plutão, que deveria ser classificado de alguma outra maneira, junto com os transnetunianos semelhantes a ele.

A questão só poderia ser resolvida pela União Astronômica Internacional (IAU – sigla em inglês de International Astronomical Union ), uma entidade que, entre outras atribuições, faz a regulamentação de nomenclaturas, classificações e definições utilizadas na Astronomia.

No dia 24 de agosto de 2006, a União Astronômica Internacional publicou resoluções criando duas novas categorias de objetos do Sistema Solar: Planetas e Planetas Anões . Plutão passa a ser planeta anão, e os outros planetas do Sistema Solar, planetas.

Segue abaixo tradução de parte das resoluções publicadas pela IAU, a respeito dessa mudança de classificação de alguns corpos do Sistema Solar.

Resolução da IAU: Definição de um Planeta no Sistema Solar

Observações contemporâneas estão mudando nosso entendimento de sistemas planetários, e é importante que nossa nomenclatura para os objetos reflita nosso entendimento corrente. Isso se aplica, em particular, para a designação ‘planetas’. A palavra ‘planeta’ originalmente descrevia ‘viajantes’, que eram conhecidos apenas como luzes que se deslocavam no céu. Descobertas recentes nos levam a criar uma nova definição, o que pode ser feito utilizando-se informações científicas disponíveis.

RESOLUÇÃO 5A.

A IAU resolve que planetas e outros corpos no nosso Sistema Solar, exceto satélites, são definidos em três categorias distintas da seguinte maneira:

(1) Um planeta¹ é um corpo celeste que (a) está em órbita ao redor do Sol, (b) tem suficiente massa para que sua própria gravidade se sobreponha a forças de corpo rígido de maneira que ele mantenha uma forma (aproximadamente redonda) em equilíbrio hidrostático, e (c) tem a vizinhança em torno de sua órbita livre.

(2) Um planeta anão é um corpo celeste que (a) está em órbita ao redor do Sol, (b) tem suficiente massa para que sua própria gravidade se sobreponha a forças de corpo rígido de maneira que ele mantenha uma forma² (aproximadamente redonda) em equilíbrio hidrostático, (c) não tem a vizinhança em torno de sua órbita livre, e (d) não é um satélite.

(3) Todos os outros objetos³ , exceto satélites, orbitando o Sol serão referidos coletivamente como “Pequenos Corpos do Sistema Solar”.

1 Os oito planetas são: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.

2 Um processo da IAU será estabelecido para designar objetos incertos na categoria de planeta anão ou outras categorias.

3 Esses atualmente incluem a maioria dos asteróides do Sistema Solar, a maioria dos Objetos Transnetunianos (TNOs), cometas e outros corpos pequenos.

RESOLUÇÃO DA IAU: Plutão

RESOLUÇÃO 6A.

A IAU adiante resolve:

Plutão é um planeta anão pela definição acima e é reconhecido como o protótipo de uma nova categoria de objetos transnetunianos.

RESOLUÇÃO 6B.

1 – Em 14 de setembro de 2006, a IAU retira o nome 2003 UB313, e esse objeto passa a se chamar Éris, deusa grega da discórdia e da contenda. Bom nome para um astro que gerou divisão na comunidade astronômica, não acha? Seu satélite fica batizado de Disnomia.

Plutão

Deus dos infernos. Descoberto em 1930, ainda não foi alvo de visita de sondas espaciais.

Plutão é menor que a nossa Lua (além de Io, Europa, Ganimedes, Calixto, Titã e Tritão). Até agora não foi visitado por nenhuma espaçonave.

Plutão leva 248 anos para completar uma volta ao redor do Sol. Fica durante 20 anos mais próximo do Sol do que Netuno (última vez de 1979 a 1999), por causa da excentricidade de sua órbita. Apesar disso, não há a possibilidade destes corpos celestes se colidirem.

Devido à sua distância, nem o telescópio espacial Hubble conseguiu definir até agora sua superfície. É composto de 80% de rocha e 10% de gelo de água, aproximadamente.

Tabela do Sistema Solar

Cometas

Existem registros destes objetos desde 240 a.C. pelos chineses (cometa de Halley). Estavam sempre associados a guerras, enchentes, pestes, destruição de impérios, etc.
Mais de 800 já foram catalogados e suas órbitas calculadas, sendo 184 periódicos (órbitas menores que 200 anos).

Com poucos quilômetros de extensão, os cometas são pequenos corpos viajando ao redor do Sol em longas órbitas elípticas.

O núcleo, de gelo e gás com pouca poeira, é a única parte substancial sólida do cometa. À medida que o núcleo cometário se move para regiões mais internas do Sistema Solar, a luz do Sol o aquece e o gelo em sua superfície se transforma em vapor, formando a cabeleira ou coma. Uma nuvem de hidrogênio muito rarefeita com milhões de quilômetros circunda o núcleo. O gás da cabeleira, juntamente com partículas de poeira, é empurrado pela pressão de radiação do Sol e pelo vento solar, formando então duas caudas, de poeira e de íons, respectivamente, podendo se estender por mais de uma unidade astronômica (1 u.a. = distância média Terra-Sol = 150.000.000km).

Os cometas geralmente começam a ser vistos quando estão a uma distância similar à de Júpiter, começando a apresentar uma cauda. Em 1987, a sonda Gioto, da Agência Espacial Européia, chegou a 540 quilômetros do cometa Halley, desvendando alguns dos mistérios destes objetos.

Suas órbitas originais estão além de Plutão. Após passarem próximo do Sol ou de algum planeta, estas órbitas podem se alterar, eventualmente, até se chocar com a nossa estrela ou um planeta.

Muitos cometas são descobertos por astrônomos amadores. Duas regiões do Sistema Solar são dominadas pelos cometas. A primeira é conhecida como Cinturão de Kuiper. Este se estende além da órbita de Netuno, indo até, aproximadamente, umas 100 u.a. (Plutão está a cerca de 40 u.a.). Acredita-se que os cometas de curto período se originem nesta região. A perturbação dos planetas gigantes lança estes objetos em direção ao Sol. A segunda região é a Nuvem de Oort (prevista em 1950), com mais de um trilhão de cometas, se estendendo de 30.000 u.a. a até um ano-luz, aproximadamente (um ano-luz = 9,5 trilhões de quilômetros).

Meteoróides, Meteoros e Meteoritos

Girando ao redor do Sol existe um número incontável de pedaços de rochas, cujos tamanhos variam de milímetros a dezenas de metros: são os meteoróides.

Eventualmente colidem com outro astro, podendo produzir crateras. Ao ingressarem na atmosfera terrestre com grandes velocidades, essas rochas são volatizadas pelo atrito tornando-se momentaneamente luminosas, sendo então chamadas meteoros. Se não forem totalmente desintegradas elas atingem o solo e aí são denominadas meteoritos. Um grande número de meteoróides penetra a atmosfera a cada dia.

A maioria destes detritos celestes são provenientes de asteróides e poucos vêm de cometas, da Lua e de Marte.

Como exemplo de crateras produzidas pela queda de meteoritos temos a cratera do Meteoro, nos Estados Unidos, com 1,2km de diâmetro e 200m de profundidade. O objeto que a originou caiu há 50 mil anos.

No Brasil temos uma cratera na serra da Cangalha (Maranhão), visível de avião. O mais famoso meteorito brasileiro, o Bedengó, está em exposição no Museu Nacional, na Quinta da Boavista, e pesa cerca de cinco toneladas.

A queda de um meteorito no México formou uma cratera com mais de 100km de diâmetro, responsável, pelo menos em grande parte, pela extinção dos dinossauros há 65 milhões de anos.

A presença de vegetação, vento e chuva dificulta a visualização e a permanência de crateras. Em planetas e satélites, onde não existe atmosfera, as crateras produzidas permanecem por muito tempo (milhares de anos), pois não há nenhum fenômeno local para destruí-las.

Novos Planetas

Há muito tempo o homem tem procurado planetas fora do Sistema Solar. Nos últimos anos, conseguimos identificar os primeiros astros do gênero. Até o momento (junho de 2007), 236 planetas já foram descobertos, tendo na sua maioria o tamanho aproximado de Júpiter. Recentemente foi descoberto um planeta muito semelhante à Terra. Ele possui cerca de 5 vezes a massa da Terra, seu tamanho é aproximadamente 50% maior, e apresenta temperatura e distância, à estrela à qual gira, que permitem a presença de água líquida. Esses fatos nos levam a cogitar a possibilidades de vida no planeta.

Todos foram descobertos indiretamente, ou seja, não foram vistos através de telescópios. Isso porque são bastante pequenos em comparação com a estrela que orbitam e não possuem luz própria, uma das características dos planetas.

A técnica utilizada para se detectar objetos tão pequenos e tão distantes consiste em observar desvios nos espectros (a impressão digital das estrelas) da estrela observada e, assim, determinar a massa do objeto que a orbita. Este desvio é conhecido como efeito Doppler, o mesmo de uma sirene de ambulância, quando ouvimos barulhos diferentes quando ela se aproxima e se afasta.

Esses planetas confirmam a suspeita dos astrônomos de que bilhões de planetas devem existir em nossa galáxia. É questão de tempo para conhecermos milhares deles.

Atividade: Determinação da Distância entre a Terra e a Lua

Sabendo-se o diâmetro da Lua em quilômetros, é fácil obter-se a sua distância. Para isso, é só determinar o ângulo compreendido pelo limbo lunar.

Procure uma janela que esteja voltada, aproximadamente, ou para o nascente ou para o poente. Numa noite próxima à Lua cheia, cole duas tiras de esparadrapo ou fita isolante paralelas, separadas por 30mm aproximadamente, no vidro da janela. A observação deverá ser feita pouco depois do “nascimento” da Lua, se a janela estiver voltada para o nascente, ou pouco depois antes do seu ocaso, se a janela estiver voltada para o poente.

Agora, com apenas um olho aberto, procure ficar a uma distância tal que a Lua “toque” a parte interna das fitas. Feito isto, marque a posição em que seu olho se encontra com o auxílio da quina de livros empilhados até uma altura conveniente. Meça a distância com a maior precisão possível dos livros até as fitas, assim como a separação da parte interna das fitas.

A distância da Terra à Lua, em quilômetros, é obtida pela relação:

LF / distância da Lua = SF / diâmetro da Lua
SF = separação entre as fitas
LF = distância entre os livros até as fitas
diâmetro da Lua = 3.740km

Atividade: Determinação do Diâmetro do Sol
Qual será o diâmetro do Sol em quilômetros? A experiência é semelhante à anterior.
O nosso astro é muito brilhante e vamos tirar proveito disto para efetuarmos a experiência. Usaremos o princípio da “câmara escura”.

Use um pequeno espelho coberto por um papel preto em que foi previamente feito um furo de aproximadamente 4mm. Agora, projete a imagem refletida do Sol a uns 5 ou 7 metros de distância em um papel branco fixo em uma parede. Meça agora a distância precisa do espelho até a imagem, assim como o diâmetro da mesma. Será necessário apoiar o espelho em algum lugar para se obter uma imagem “imóvel”, por pelo menos alguns segundos, para ser medida.

O diâmetro do Sol, em quilômetros, é dado por: Diâmetro da imagem / Diâmetro do Sol = Distância da imagem ao furo / Distância do Sol à Terra.

Obs.: Alguns céticos duvidam de que esta seja a imagem do Sol. Argumentam também que a imagem é circular porque o furo tem esta forma. Tente fazer furos em forma de triângulos ou quadrados, com as dimensões já especificadas, e terá imagens sempre circulares. O furo circular oferece resultados melhores.

Atividade: Representação do Sistema Solar

Nesta atividade vamos representar a proporção dos tamanhos do Sol e dos planetas, além das distâncias dos planetas ao Sol. É interessante mostrar isso às crianças. Tente fazer num jardim ou numa praça essa representação.

a) Modelos dos Tamanhos
Se o Sol tiver um metro de diâmetro, os planetas terão os seguintes tamanhos:

 
b) Modelos das Distâncias
Suponhamos, agora, que a distância Sol-Terra seja de um metro; as distâncias dos outros planetas e o tempo necessário para um avião chegar ao Sol viajando a 1.000 quilômetros por hora seriam:


http://www.itexam-online.com/
http://www.passexamvce.com/
http://www.itcert-online.com/
n10-006 practice test
220-901 practice test
adm 201 practice exam
70-532
640-916 dumps pdf
300-135 vce
70-346 study guide pdf
70-534 book
200-105 icnd2 pdf
300-070 vce
300-209 dumps
300-101 dumps
70-483
200-355 wifund
210-065 pdf
840-425 exam pdf
70-532 exam preparation
220-901 dumps

Categories
Coluna do Astrônomo

Tipos de Meteoritos

Como em todos os campos da Ciência, a meteorítica também procura agrupar seus objetos de trabalho segundo critérios bem definidos. Por convenção, dividem-se todos os meteoritos em 3 classes principais, segundo os seus tipos de componentes. Os metálicos, compostos basicamente de ferro, níquel e uma pequena quantidade de silicatos, também chamados de sideritos. Os meteoritos rochosos, aerolitos, formado na sua maioria por silicatos e quase nenhuma ou nenhuma porção de metais e um terceiro tipo, os siderolitos, onde encontramos quantidades similares de metais e silicatos.

Os minerais meteoríticos mais comuns são: ferro, níquel e cobalto, presentes em grande parte dos meteoritos e principalmente no metálicos; a troilita, o principal sulfeto meteorítico; os piroxenos, um silicato ferro-magnésio-cálcio comum; as olivinas, um silicato ferro-magnésio e o plagioclassio, um outro silicato, só que desta vez de sódio-cálcio-alumínio.

Apresentraremos algumas características de cada um dos grupos principais, de uma maneira bem superficial. Para maiores detalhes devem ser pesquisados livros específicos.

Os meteoritos rochosos podem ser divididos em duas categorias. A grande maioria apresenta pequenos objetos redondos, chamados de côndrulos, que dão origem à essa categoria, os condritos. O restante dos rochosos que não apresentam côndrulos são denominados acondritos.

Os meteoritos rochosos, condritos e acondritos são os tipos mais comuns. Sendo o primeiro com uma quantidade muito maior que a quantidade de todos os outros tipos juntos.

Por causa da afirmativa anterior sobre a quantidade nos diversos tipos, pode surgir uma pergunta: Como é que existe mais meteoritos rochosos se em todos os lugares que visitei que tinha um meteorito era do tipo metálico?

A razão para isso é muito simples, os meteoritos rochosos possuem uma beleza que não é fácil de ser apreciada. É necessário colocá-los e um microscópio para admirar a riqueza de cores e texturas que estes apresentam. Vistos a olho nu, parecem pedaços de rochas comuns, com alguns grãos de areia. Além disso, os meteoritos rochosos são maiores, uma vez que conseguem resistir mais ao processo de entrada na atmosfera e de choque com a superfície terrestre, além de terem uma estrutura interna muito bonita e fácil de ser observada quando polida.

Os meteoritos de rocha e metais em quantidades parecidas, siderolitos, dividem-se em quatro tipos distintos, sendo classificados de acordo com o tipo de mineral que se encontra junto com o metal, como pode ser visto na tabela abaixo.

Por fim temos os, sideritos, meteoritos compostos basicamente de ferro e níquel, cuja estrutura interna possui uma beleza rara quando tratada simplesmente com uma lixa e ácido.

Categories
Coluna do Astrônomo

A Relatividade e o Espaço

Quando falamos sobre o tempo, vimos que quando a velocidade relativa entre dois sistemas de referência (digamos, um sistema terrestre e um sistema em um foguete) é muito grande, devemos relacioná-los através de um conjunto de equações conhecido como transformações de Lorentz.

Se considerarmos uma velocidade relativa , paralela ao eixo , teremos:

A equação do tempo nos mostrou que relógios em movimento medem o tempo mais lentamente do que relógios em repouso. A transformação para a coordenada espacial, veremos, nos diz que o espaço se contrai na direção do movimento.

Imaginemos uma régua de um metro, que será acelerada até atingir metade da velocidade da luz. Quem estiver em movimento com ela obviamente a verá parada:

Mas quem estiver parado, medirá:

Mas uma medição de um certo comprimento deve ser feita simultaneamente em ambos os lados. Portanto e

Substituindo os valores, teremos:

Quem estiver parado, vai medir o comprimento da régua de um metro como sendo de apenas 87 centímetros.

Categories
Coluna do Astrônomo

As Transformações de Lorentz

Este conjunto de equações foi proposto por Lorentz para relacionar medições entre um referencial em movimento (C) e um referencial em repouso (B). A velocidade relativa entre eles é , paralela ao eixo . Repare que quando a velocidade for zero ou muito, muito pequena (comparada à velocidade da luz), nós recuperamos o conjunto conhecido como transformações de Galileu, válido para a física newtoniana.

Este conjunto de equações encerra o pensamento de Lorentz e contém em si a contração espacial, a dilatação temporal e (com mais algumas considerações físicas) o aumento da massa.
 

Categories
Coluna do Astrônomo

Dia de Reis

Dias santos, por se tratarem de uma questão de fé, são sempre envoltos em certo mistério. Misturando partes de história e lenda, suas origens são, por definição, imprecisas e, na maioria das vezes, mutáveis.

Por que o dia 6 de janeiro é chamado “Dia de Reis”?

Parece não haver dúvida que essa celebração tem origem no batismo de Cristo, que teria acontecido, em nosso calendário atual, no dia 6 de janeiro. Mas os primeiros historiadores cristãos, que nos forneceram essa data, reconheciam o dia 20 de maio como o do nascimento de Cristo. Se não os respeitamos em relação à data do nascimento, por que sobreviveu até hoje uma celebração no dia 6 de janeiro?

As igrejas cristãs do oriente celebravam neste dia o nascimento de Cristo; as igrejas cristãs ocidentais fixaram tal evento no dia 25 de dezembro. Essa proximidade entre as datas acabou dando origem ao período de celebração conhecido como “Tempo da Epifânia”, ou “doze dias de Natal”. Atualmente, o dia 6 de janeiro é considerado pela Igreja Católica como o início da Epifânia, e recebe popularmente o nome de “Dia de Reis” em grande parte dos países da América Latina.

Os “reis” em questão são os reis magos, que não eram reis nem tampouco magos. Eram homens sábios, conhecedores de ciência e de magia (ciência e magia freqüentemente eram sinônimos naqueles tempos remotos). Não se sabe ao certo quantos eram os “reis”, mas como o Evangelho de Mateus cita três presentes ofertados, a idéia de que eram três visitantes se disseminou. Não há referências a seus nomes na Bíblia. Posteriormente, surgiram os nomes Baltazar, Gaspar e Melquior. Além de ganharem nomes a posteriori, ganharam também um senso de universalidade, com Baltazar sendo representado em peças artísticas como um mouro e Gaspar com traços orientais. Independentemente dos nomes e da quantidade, historiadores concordam que os “reis magos” (ou melhor, homens sábios) eram astrólogos persas.
Historiadores da Bíblia argumentam que os homens sábios do Oriente não devem ter visitado Cristo antes de seu 40 o dia de vida. Mas reunindo as diferentes celebrações das distintas vertentes cristãs pelo mundo, as pessoas começaram a celebrar o dia 6 de janeiro como o dia da visita dos “reis magos”. Esta tradição se fortaleceu em grande parte dos países latino-americanos e desde então o dia 6 de janeiro é reconhecido popularmente como o Dia de Reis.

Fontes:
Wikipedia (http://en.wikipedia.org)
Catholic Encyclopedia (http://www.newadvent.org/cathen/)

Categories
Coluna do Astrônomo

Equações de Maxwell

Estas equações relacionam o campo elétrico () e o campo magnético (), juntamente com suas variações no espaço (representadas pelo operador diferencial nabla – ) e no tempo . Nas equações de Maxwell também aparecem a corrente (), a densidade de cargas elétricas () e e duas grandezas inerentes ao meio em que os campos elétrico e magnético se propagam: a permissividade () e a permeabilidade (); no caso do vácuo, aparece o subscrito 0.

 1. Lei de Gauss para o campo elétrico    
    

 2. Lei de Faraday-Henry    
    

 3. Lei de Gauss para o campo magnético    
    

 4. Lei de Ampère-Maxwellv    
    

Uma manipulação habilidosa deste conjunto de equações, bastante simplificadas se considerarmos regiões do espaço sem cargas e correntes, resulta em um par de outras equações que são prontamente reconhecidas como equações de ondas:

A teoria ondulatória nos diz que a velocidade de propagação de uma onda é dada pela raiz quadrada do inverso da constante que multiplica o termo temporal de sua equação. Assim, a onda elétrica (e também a magnética) se propaga no vácuo com uma velocidade de

(É muito importante frisar que este valor é calculado, e não medido. Os valores numéricos de
e de são obtidos, e só então é calculada a velocidade da luz).

Categories
Coluna do Astrônomo

Os Primórdios da Relatividade: Einstein

Por Alexandre Cherman (alexandre.cherman@planetario.rio.rj.gov.br)

Invariância é uma propriedade que algumas leis físicas possuem sob certas transformações de sistemas de coordenadas. Ela é muito importante visto que pode ser considerada uma medida da abrangência da validade das equações que regem os processos físicos. As transformações de Galileu mantinham invariantes as equações de movimento propostas por Newton, e isto apenas reforçava a importância da visão do mundo sugerida pelo físico inglês.

Com o surgimento de um novo ramo da física, o eletromagnetismo, percebeu-se que as equações de Maxwell não eram invariantes sob transformações de Galileu. Esta constatação levava à óbvia (e perigosa) bifurcação: ou mexia-se nas transformações de Galileu ou mexia-se nas equações de Maxwell.

Confiante na validade da cinemática proposta pelas equações do eletromagnetismo de Maxwell, Einstein se propôs a encontrar um conjunto de transformações de coordenadas que mantivessem intactas as formas destas equações. Mais precisamente, fez isso através de dois postulados básicos:

1. As leis da física assumem a mesma forma em todos os referenciais inerciais;

2. Em qualquer referencial inercial a velocidade da luz, é sempre a mesma, seja emitida por um corpo em repouso ou por um corpo em movimento uniforme.

Vemos que o primeiro postulado nada mais é do que o argumento de invariância já descrito aqui (repare sempre que Einstein, neste momento, exclui forças e acelerações).

O segundo postulado é o mais importante, por assim dizer. Ele representa uma quebra do bom senso. Imaginemos um lançador de bolas de tênis que lance as referidas bolas a uma velocidade de 10m/s. Vamos colocá-lo, agora, em cima de um caminhão que esteja andando a 5m/s. É óbvio que para um desafortunado tenista que esteja frente a frente com o veículo, as bolas estarão chegando com uma velocidade de 15m/s. O que o segundo postulado de Einstein nos diz é que se o lançador estiver arremessando “bolas de luz” (a 300.000km/s), tanto faz ele estar parado ou em cima de um caminhão em movimento (com uma velocidade de 5m/s ou 200.000km/s): a velocidade das “bolas de luz” será sempre de 300.000km/s. É este desafio ao bom senso que a Relatividade nos apresenta.

Para entendermos como isso é possível, fisicamente, basta abandonarmos a lei de adição comum que usamos para as velocidades (em nosso caso acima, 5+10=15). A nova lei de adição de velocidades, proposta por Einstein, é:

Como em nosso caso, e na grande maioria dos fenômenos cotidianos, a razão

é muito pequena, podemos tomá-la como zero, recaindo na fórmula usual de adição.

Por que Einstein propôs a velocidade da luz como um limite físico para o movimento (sim, pois vemos pela nova regra de adição que nada poderá viajar mais rapidamente do que a luz)? Se a confiança de Einstein na nova dinâmica proposta por Maxwell era limitada, podemos dizer que era total quanto à cinemática. Assim, as equações da onda eletromagnética deveriam ser válidas independentemente da velocidade do observador em relação à luz.

O que veria alguém que viajasse na velocidade da luz? A princípio, não veria nada. Sim, pois as ondas eletromagnéticas não o alcançariam. Mais precisamente, neste referencial comum, a velocidade de propagação da onda é zero, descaracterizando-a como tal. A onda luminosa deixa de existir! Einstein se recusou a concordar com isso. Surgia, então, seu segundo postulado.
A partir de seus dois postulados, Einstein obteve um conjunto de transformações entre dois referenciais inerciais que mantivessem as equações de Maxwell inalteradas. Não por acaso, as transformações obtidas eram as próprias transformações de Lorentz para um deslocamento relativo na direção

Devemos atentar para o fato de que, na época desta sua conclusão, o físico alemão não tinha conhecimento nem da experiência de Michelson e Morley, nem da solução proposta por Lorentz.

Começava aqui o longo caminho de sucesso de um novo ramo da física.

Categories
Coluna do Astrônomo

Os Primórdios da Relatividade: As Transformações de Lorentz

Toda onda necessita de um meio material para se propagar. O som que ouvimos normalmente nada mais é do que variações de pressão em pequenas faixas de ar. Como se costuma dizer na literatura de ficção científica, “no vácuo, ninguém pode ouvir você gritar”; não há um meio para as ondas sonoras viajarem. A onda de luz, e posteriormente a onda eletromagnética, utilizava-se do éter luminífero (aether luminipherus = “ar portador de luz”) para viajar pelo espaço. Este era uma substância estranha e misteriosa que preenchia o espaço vazio, remetendo às idéias clássicas da “quinta essência” de Aristóteles e dos neoplatônicos.

Uma vez que se sabia bem o que era luz, pensou-se em usá-la para estudar o éter. Mais precisamente o movimento da Terra através dele. Em 1881, o físico americano Albert Michelson concebeu um instrumento por ele batizado de interferômetro. Esse aparelho servia para dividir um raio de luz em dois feixes distintos, remetendo cada um deles em uma direção e reunindo-os novamente a seguir. Se os dois feixes percorressem precisamente a mesma distância, com a mesma velocidade, eles se juntariam depois ainda na mesma fase (a luz permanecendo inalterada). Mas se a distância percorrida ou a velocidade mudassem, mesmo que ligeiramente, os feixes reunidos estariam fora de fase e o aparelho registraria uma interferência semelhante à obtida por Young oitenta anos antes.

Michelson projetou os dois feixes de luz em percursos perpendiculares – um dos quais seguia na direção do movimento da Terra através do éter. Como a composição das velocidades (da luz em relação à Terra e da Terra em relação ao éter) seria diferente para os diferentes feixes, o aparelho deveria acusar uma interferência na chegada das ondas. Isso não foi encontrado.

Michelson atribuiu o fracasso de seu experimento ao método utilizado para as medições. Por vários anos ele refinou sua aparelhagem tentando medir as franjas de interferência, por menor que fossem. Já em 1887, auxiliado pelo químico americano Edward Morley (1838-1923), ele executou sua derradeira experiência e mais uma vez não obteve os resultados esperados. Várias explicações pouco prováveis (entre elas a de que a Terra “arrastava” uma porção do éter em seu movimento e por isso a velocidade relativa entre ambos era zero) foram sugeridas, mas nenhuma foi de fato levada a sério. Talvez a experiência de Michelson e Morley tenha sido o fracasso mais importante da história da ciência moderna.

Em 1892, o físico irlandês George Fitzgerald (1851-1901) propôs uma solução para o problema que rompia as barreiras do bom senso. Disse ele que o espaço (i.e., a distância percorrida) se contraía na direção do movimento. Essa mudança na distância seria tal que manteria em fase os feixes de luz viajando em direções distintas. A contração de Fitzgerald, como é conhecida, lembrava o ideal platônico de “salvar os fenômenos”, visto que era uma hipótese complicadora proposta ad hoc.

Seguindo os passos de Fitzgerald, o físico holandês Hendrik Lorentz (1853-1928), em 1895, corroborou a contração de Fitzgerald, incorporando-a às suas idéias sobre sistemas em movimento, e foi mais além. Lorentz postulou que a massa de uma partícula qualquer aumentava à medida que esta atingia velocidades cada vez maiores. Começava aqui a surgir a noção da velocidade da luz como limite máximo no Universo. Este aumento de massa foi medido em laboratório cinco anos depois. Lorentz também ressaltou o fato de que uma contração na distância acarretaria uma dilatação do tempo (o tempo passa mais devagar para quem está se movendo).

Lorentz propôs um conjunto de equações que descreviam estes “fenômenos”. Por deformarem espaço e tempo, estas equações mantinham constante a velocidade da luz, pois velocidade é espaço percorrido dividido pelo tempo. A figura de interferência era impossível, pois a luz sempre viaja com a mesma velocidade, independente da velocidade com que esteja viajando sua fonte!

Um certo físico alemão chegou a estas mesmas conclusões, apesar de ter trilhado um caminho diferente.

Categories
Coluna do Astrônomo

Os Primórdios da Relatividade: O Eletromagnetismo

O caminho histórico que nos leva à Teoria da Relatividade, proposta pelo físico alemão Albert Einstein (1879-1955) em 1905 e posteriormente generalizada por ele mesmo em 1915, começa (se é que é possível fixar um início exato para uma revolução ou descoberta) com a unificação da eletricidade e do magnetismo, cujo primeiro vislumbre se deu através dos experimentos do físico dinamarquês Hans Christian Orsted (1777-1851).

Antes dele, muitos já cogitavam a hipótese de que eletricidade e magnetismo possuíam algum tipo de relação. Afinal, ambos apresentam-se em dois aspectos opostos (no caso da eletricidade, temos as cargas positivas e negativas; no caso do magnetismo, temos os pólos norte e sul). Nos dois casos os opostos se atraem e os semelhantes se repelem. Ainda em ambos os casos, as forças de repulsão e atração diminuem com o quadrado da distância (dobre-se a distância entre duas cargas ou pólos e a força que sentiam será quatro vezes menor do que antes).

Em 1820, Orsted (em sala de aula) aproximou o ponteiro de uma bússola de um fio por onde passava uma corrente elétrica. Para surpresa geral, o ponteiro mudava sua posição, deixando de indicar o pólo norte. Caso a corrente fosse invertida, invertia-se também a posição do ponteiro. Ficava claro que a presença de uma corrente elétrica no fio perturbava as propriedades magnéticas das proximidades.

Esta idéia ganhou força com os experimentos de outros eminentes físicos da época. Ainda em 1820, o francês André-Marie Ampère (1775-1836) mostrou que dois fios paralelos que apresentassem correntes na mesma direção se atraíam. Se as correntes fossem em direção oposta, os fios se repeliam. Outro francês, François Aragos (1786-1853), demonstrou que se uma corrente passasse por um fio de cobre, este poderia atrair e manter filamentos de ferro, exatamente como um ímã. Por fim, o alemão Johann Schweigger (1779-1857) observou que a quantidade de deflexão da agulha variava em proporção à força da corrente no fio, em referência à experiência original de Orsted (inventando assim o galvanômetro – aparelho que mede a intensidade da corrente em um fio).

Estas descobertas provocaram uma avalanche de experimentos científicos. No ano seguinte, o físico inglês Michael Faraday (1791-1867) organizou um circuito elétrico que incluía dois fios e dois magnetos. Em um dos casos, o fio era fixo e o ímã era móvel. No outro, era o ímã que ficava fixo e o fio móvel. Quando a corrente passava através do fio, o fio móvel movia-se em torno do magneto fixo e o magneto móvel movia-se em torno do fio fixo. Dessa maneira, Faraday demonstrou pela primeira vez que as forças elétricas podiam produzir movimento.

Independente desta conclusão (que daria origem ao dínamo e aos motores elétricos), Faraday propôs a existência de linhas de força ao redor do fio: um campo magnético gerado pela corrente. Começou com esta experiência a concepção que hoje é um dos pontos centrais da física: a de que o Universo é permeado por campos, que são os condutores das forças.

Paralelamente a estas descobertas físicas, o matemático alemão Carl Gauss (1777-1855) desenvolveu seu teorema da divergência (também conhecido por teorema de Gauss), que relaciona o fluxo através de uma superfície fechada com a quantidade contida no volume definido por esta superfície. Uma vez que se percebeu que a eletricidade e o magnetismo podiam ser representados por campos, o teorema de Gauss simplificava bastante a compreensão de certos resultados.

Dispondo do cálculo integral e diferencial, o matemático britânico James Clerk Maxwell (1831-1879) conseguiu, em 1855, traduzir o conceito de Faraday para a forma matemática e demonstrar que a visão intuitiva do físico inglês sobre as linhas de força estava correta. Maxwell teve a habilidade necessária para compilar os trabalhos da época e interligá-los em um conjunto de quatro equações que são conhecidas como as equações de Maxwell.

Estas equações nos mostram que uma variação do campo elétrico gera um campo magnético e vice-versa. Assim, ao se propagar no vácuo (ou em qualquer outro meio), uma onda elétrica gera uma onda magnética. Temos, na verdade, um conjunto indissolúvel conhecido como onda eletromagnética. Estavam unificados os campos elétrico e magnético, dando origem ao ramo da física conhecido por eletromagnetismo.

Não por acaso, a velocidade calculada para a onda eletromagnética coincidia com o valor conhecido na época (bastante correto) para a velocidade da luz. Sabia-se também, através dos resultados experimentais obtidos em 1801 pelo físico inglês Thomas Young (1773-1829) envolvendo os fenômenos de difração e interferência, que a luz era uma onda. Ela, que já havia sido “o mais imaterial dos corpos” segundo os neoplatônicos, e também um fluxo contínuo de corpúsculos como primeiramente pensado por Isaac Newton (1642-1727), mostrava-se agora como uma onda eletromagnética. Este novo status permitia uma manipulação numérica mais precisa e conseqüente melhora nos resultados experimentais e nas previsões teóricas.

Mas, se a luz é uma onda – e uma onda nada mais é do que uma perturbação em um certo meio – o que a onda luz ondula, afinal?

Categories
Coluna do Astrônomo

Cosmologia

Quando estudamos as galáxias, vemos que elas se afastam umas das outras, uma constatação da década de 10, que em 1929 foi formalizada matematicamente pelo astrônomo americano Edwin Hubble, ficando conhecida como Lei de Hubble. Até então, julgava-se que o Universo fosse algo estático em larga escala, o que equivale a dizer que, apesar de todos os movimentos em seu interior (desde a Lua girando ao redor da Terra a rotação das grandes
galáxias), o Universo em si não se alterava. Este modelo, Universo Estático, chegou a ser privilegiado, em 1916, por Albert Einstein em sua Teoria da Relatividade Geral (as equações encontradas por Einstein não confirmavam esta idéia; por isso ele, arbitrariamente, criou a chamada constante cosmológica, que, somada ao resultado final de sua equação, resultava em um universo desprovido de movimento global. Anos mais tarde, o próprio Einstein admitiu ter sido este o maior erro científico de sua vida).

Este afastamento geral das galáxias concordava com as soluções que o astrônomo holandês Willem de Sitter (e depois dele, com soluções mais completas, o matemático russo Alexander Friedmann) havia encontrado para as equações de Einstein, sem a constante cosmológica, em 1917. Porém, a noção de que o Universo deveria sempre se apresentar como o vemos hoje, fez surgir um modelo conhecido como Universo Estacionário, proposto pelo astrônomo Fred Hoyle, em 1948. Este universo admitia o afastamento das galáxias, acrescentando a este fato comprovado a criação de novas galáxias (e matéria em geral). Assim, apesar de as distâncias entre as galáxias aumentarem sempre, devido ao afastamento, seu aspecto permanecia imutável. Daí seu nome. O modelo do Universo Estacionário foi descartado, pois uma de suas bases, a criação de matéria a partir do nada, nunca conseguiu ser explicada.

Antes disso, em 1927, o astrofísico belga Georges-Henri Lemaitre concluiu que a expansão do Universo significava que, em seus primórdios, este mesmo Universo era muito menor. Se voltássemos suficientemente no tempo, chegaríamos a uma época onde o tamanho do Universo seria tão pequeno que toda a sua matéria constituinte sofreria uma incrível pressão (a uma altíssima temperatura). Lemaitre chamou este corpo muito pequeno de ovo cósmico. As leis da física seriam bastante diferentes sob estas condições extremas, o que possibilitaria a criação de matéria a partir da energia (de acordo com a Teoria da Relatividade, energia – E – e massa – m – são equivalentes; E=mc2, onde c é a velocidade da luz).

Em 1948, contemporaneamente ao modelo de Hoyle, George Gamow, físico americano, sugeriu que este ovo primordial teria iniciado sua expansão de forma violenta, como em um estouro. Este modelo cosmológico, o mais famoso, é conhecido por seu nome em inglês, Big Bang (“Grande Bum”, um nome cunhado pelo próprio Hoyle como uma forma de desacreditar esta idéia).

A credibilidade deste modelo é reforçada por algo conhecido como radiação de fundo, detectada pela primeira vez em 1964 pelos físicos norte-americanos Arno Penzias e Robert Wilson. Para onde quer que se aponte um radiotelescópio, sempre se ouvirá um ruído. Este ruído, por existir em todo o céu, em todas as direções, é considerado o “eco” da grande explosão. Seu estudo, juntamente com a velocidade de afastamento das galáxias, permite estimar a idade de nosso Universo: algo em torno de 15 a 20 bilhões de anos. Mais recentemente, em 1989, entrou em órbita polar o satélite norte-americano Explorador de Fundo Cósmico (COBE, da sigla em inglês). Projetado para medir a radiação de fundo livre da influência de nossa atmosfera, ele confirmou sua existência em todas as direções.

E quanto ao futuro do Universo? Sua expansão se dará para sempre ou cessará algum dia? Isso depende da quantidade de matéria existente nele. A energia da explosão inicial, energia cinética, é contrabalançada pela energia de atração dos corpos, gravitacional. Se houver massa suficiente para que esta última seja maior do que a primeira, a expansão cessará e o Universo passará a se contrair, rumo a um fim muito semelhante ao seu início, conhecido como Big Crunch. Esta hipótese é conhecida como Universo Fechado. Mas se a matéria total do Universo não for suficiente para frear sua expansão, esta se dará para sempre. O Universo caminhará lentamente para um fim gelado, onde as galáxias estarão infinitamente distantes umas das outras. Este seria o Universo Aberto.

Infelizmente, não se observa matéria suficiente para corroborar o modelo do Universo Fechado. Para que ele funcione, seria necessária a existência de um tipo desconhecido de matéria que não pode ser observada, mas age gravitacionalmente. Outros problemas em Astronomia – como, por exemplo, a rotação de nossa galáxia – suscitaram a postulação de algo semelhante, que se denominou matéria escura. A existência de tal matéria – que devemos lembrar ser algo, por ora, estritamente teórico – confirma o Universo Fechado, sutilmente introduzindo uma simetria temporal (se há um início, deve haver um fim).

Por fim, existe um compromisso entre estes modelos, que admite a existência da matéria escura e, portanto, o Big Crunch, mas não concorda que este seja o fim de tudo. No Universo Oscilante, ou Universo Eterno, tudo é cíclico. A um instante do fim de todas as coisas, algum processo ainda desconhecido reverteria a contração, causando uma nova expansão (um novo Big Bang). Estaríamos todos em um eterno processo de criação e destruição.

Nos dias de hoje, não existem dados que privilegiem um ou outro modelo, obrigando físicos, astrônomos e matemáticos a trabalharem com todas as hipóteses possíveis (até mesmo as menos plausíveis). À medida que novos fatos são descobertos, através de observações aos longínquos confins do Universo ou de soluções matemáticas, mais detalhes são acrescentados aos modelos existentes.